图像缩放算法(最临近点插值算法、双线性内插值算法、双立方插值算法)

2021-07-01 02:05

阅读:675

标签:锯齿   缺点   div   简单的   缩放   根据   利用   双线   ble   

1、最临近点插值算法:

  当一张(N*M)大小的图像放大到((j*N)*(k*M))时,那么两张图像之间的像素点存在对应关系:

X1max / N = X2max / ( j * N ) ; 
Y1max / M = Y2max / ( k * M ) ;

其中:X1max,Y1max为源图像中两个方向的像素个数;X2max,Y2max为放大之后的图像两个方向上的像素个数;

即可得到 j  k;

x1 = x2 / j
y1 = y2 / k

放大之后(x2,y2)的像素信息按照上述公式,即可得到其对应的在源图像中的像素点,然后将原图像上的像素信息复制到(x2,y2);

如果得到的x1,y1不为整数,将其四舍五入为一个整数,

假设有一张3×3大小的图像:

234 38 22
67 44 12
89 65 63

将其放大到4×4:

234 38 22 22
67 44 12 12
89 65 63 63
89 65 63 63

优点:占用内存小;缺点:放大之后的图像有明显的锯齿,缩小失真;就是简单的将原图像中的像素信息简单的copy到新的图像中

2、双线性内插值算法

  与临近点插值算法的直接把原图像像素信息copy相比,双线性内插值算法是将得到的原采样点(浮点数)的附近点的四个像素点像素信息乘以权重得到新图像的像素信息;

将临近点插值算法中得到的x1(x1=j+t),y1(x1=k+u),其中,j k是整数部分;t u 是小数部分;

技术分享图片

根据水平方向 t  计算出四个像素的权重。

Q11 = S(j,k) * (1-t) + S(j, k+1) * t;

Q22 = S(j+1, k) * (1-t) + S(j+1,K+1) *t

利用Q11, Q22的值,进行垂直方向权重计算得出计算采样点值

D(x, y) = Q11*(1-u) + Q22 * u; 把Q11, Q22带入,最终有等式:

D(x, y) = S(j, k) *(1-t)*(1-u) + S(j, k+1)*t*(1-u) + S(j+1,k)*(1-t)*u + S(j+1,k+1)*t*u

从而得出四个对应的权重系数分别为:

a = (1-t)*(1-u)

b = (1-t)*u

c = t*u

d = t*(1-u)

带入公式一,即可得出目标像素的值。

优点:可以有效的抗锯齿;缺点:算法没有考虑边缘和图像的梯度变化

3、双立方插值算法

 

 

 

 

图像缩放算法(最临近点插值算法、双线性内插值算法、双立方插值算法)

标签:锯齿   缺点   div   简单的   缩放   根据   利用   双线   ble   

原文地址:https://www.cnblogs.com/Triw/p/9626527.html


评论


亲,登录后才可以留言!