k-Nearest Neighbors(KNN) k近邻算法
2021-07-04 05:05
标签:最大的 knn k近邻 label div 返回 src att 个数 KNN算法是机器学习最简单的算法,可以认为是没有模型的算法,也可以认为数据集就是它的模型。 它的原理非常简单:首先计算预测的点与所有的点的距离,然后从小到大排序取前K个最小的距离对应的点,统计前K个点对应的label的个数,取个数最大的labekl作为预测值 代码样例如下: 首先导入需要的numpy库和matplotlib库 创建自己的数据集 将数据集转换成numpy.array格式便于处理 创建预测的点 画出数据散点图 计算欧式距离 把距离从小到大排序,并返回索引值 返回前k(k=4)个距离最近的点对应的类别 计算k个距离最近的点对应的label的个数 返回数量最多的label作为预测值 k-Nearest Neighbors(KNN) k近邻算法 标签:最大的 knn k近邻 label div 返回 src att 个数 原文地址:https://www.cnblogs.com/wf-ml/p/9614199.html1 import numpy as np
2 import matplotlib.pyplot as plt
1 data_X = [[0,0],[0,1],[1,0],[1,1],[5,5],[5,6],[6,5],[6,6]]
2 data_y = [0,0,0,0,1,1,1,1]
1 X_train = np.array(data_x)
2 y_train = np.array(data_y)
1 x_test = np.array([3.5,3.5])
plt.scatter(x_train[y_train==0,0],X_train[y_train==0,1],color=‘g‘,marker=‘o‘)
plt.scatter(x_train[y_train==1,0],X_train[y_train==1,1],color=‘b‘,marker=‘+‘)
plt.scatter(x_test[0],x_test[1],color=‘r‘,marker=‘x‘)
plt.xlabel(‘x‘)
plt.ylabel(‘y‘)
plt.show()
1 distances = [np.sqrt(np.sum((x_test-x_train)**2)) for x_train in X_train ]
1 nearest = np.argsort(distances)
1 k = 4
2 topK_y = [y_train[i] for i in nearest[:k]]
1 from collections import Counter
2 votes = Counter(topK_y)
1 predict_y = votes.most_common(1)[0][0]
文章标题:k-Nearest Neighbors(KNN) k近邻算法
文章链接:http://soscw.com/essay/101584.html