R语言做条形图时候,离散变量和连续型变量的区别

2021-07-09 08:07

阅读:781

标签:imu   alt   gpl   离散   each   image   分类   语言   info   

1)条形图

 条形图或许是最常用图形,常用来展示分类(different categories on the x-axis)和数值(numeric values on the y-axis)之间的关系。sometimes the bar heights represent counts of cases in the data set, and sometimes they represent values in the data set(有时条形图高度代表数据集中的频数(count),有时候代表数据集中的值(values),这个要牢牢的记在心中,否则会产生疑惑).

1.1)以BOD数据框中的数据为例

技术分享图片

1.2) 当x为(连续型或数字变量):one bar at each possible x value between the minimum and the maximum

ggplot(BOD, aes(x=Time, y=demand)) + geom_bar(stat="identity")

技术分享图片

1.3) 当x为分类变量时候:having one bar at each actual x value,

# Convert Time to a discrete (categorical) variable with factor()
ggplot(BOD, aes(x=factor(Time), y=demand)) + geom_bar(stat="identity")

技术分享图片

 

R语言做条形图时候,离散变量和连续型变量的区别

标签:imu   alt   gpl   离散   each   image   分类   语言   info   

原文地址:https://www.cnblogs.com/djx571/p/9567191.html


评论


亲,登录后才可以留言!