Java 集合系列 04 LinkedList详细介绍(源码解析)和使用示例
2020-11-18 09:19
标签:des com http blog style class div img code java size
java 集合系列目录:
Java 集合系列 01 总体框架
Java 集合系列 02 Collection架构
Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例
Java 集合系列 04 LinkedList详细介绍(源码解析)和使用示例
概要
和学习ArrayList一样,接下来呢,我们先对LinkedList有个整体认识,然后再学习它的源码;最后再通过实例来学会使用LinkedList。内容包括:
第1部分
LinkedList介绍
第2部分 LinkedList数据结构
第3部分 LinkedList源码解析(基于JDK1.7)
第4部分
LinkedList遍历方式
第5部分 LinkedList示例
第1部分 LinkedList介绍
LinkedList简介
LinkedList 是一个继承于AbstractSequentialList的双向链表。它也可以被当作堆栈、队列或双端队列进行操作。
LinkedList 实现 List 接口,能对它进行队列操作。
LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
LinkedList 是非同步的。
LinkedList构造函数

// 默认构造函数 LinkedList() // 创建一个LinkedList,保护Collection中的全部元素。 LinkedList(Collection extends E> collection)

LinkedList的API

LinkedList的API boolean add(E object) void add(int location, E object) boolean addAll(Collection extends E> collection) boolean addAll(int location, Collection extends E> collection) void addFirst(E object) void addLast(E object) void clear() Object clone() boolean contains(Object object) IteratordescendingIterator() E element() E get(int location) E getFirst() E getLast() int indexOf(Object object) int lastIndexOf(Object object) ListIterator listIterator(int location) boolean offer(E o) boolean offerFirst(E e) boolean offerLast(E e) E peek() E peekFirst() E peekLast() E poll() E pollFirst() E pollLast() E pop() void push(E e) E remove() E remove(int location) boolean remove(Object object) E removeFirst() boolean removeFirstOccurrence(Object o) E removeLast() boolean removeLastOccurrence(Object o) E set(int location, E object) int size() T[] toArray(T[] contents) Object[] toArray()

AbstractSequentialList简介
在介绍LinkedList的源码之前,先介绍一下AbstractSequentialList。毕竟,LinkedList是AbstractSequentialList的子类。
AbstractSequentialList 实现了get(int index)、set(int index, E element)、add(int index, E element) 和 remove(int index)这些函数。这些接口都是随机访问List的,LinkedList是双向链表;既然它继承于AbstractSequentialList,就相当于已经实现了“get(int index)这些接口”。
此外,我们若需要通过AbstractSequentialList自己实现一个列表,只需要扩展此类,并提供 listIterator() 和 size() 方法的实现即可。若要实现不可修改的列表,则需要实现列表迭代器的 hasNext、next、hasPrevious、previous 和 index 方法即可。
第2部分 LinkedList数据结构
LinkedList的继承关系

java.lang.Object ? java.util.AbstractCollection? java.util.AbstractList ? java.util.AbstractSequentialList ? java.util.LinkedList public class LinkedList extends AbstractSequentialList implements List , Deque , Cloneable, java.io.Serializable {}

LinkedList与Collection关系如下图:
LinkedList的本质是双向链表。
(01)
LinkedList继承于AbstractSequentialList,并且实现了Dequeue接口。
(02)
LinkedList包含两个重要的成员:header 和 size。
header是双向链表的表头,它是双向链表节点所对应的类Entry的实例。Entry中包含成员变量:
previous, next,
element。其中,previous是该节点的上一个节点,next是该节点的下一个节点,element是该节点所包含的值。
size是双向链表中节点的个数。
第3部分 LinkedList源码解析(基于JDK1.7)
为了更了解LinkedList的原理,下面对LinkedList源码代码作出分析。
在阅读源码之前,我们先对LinkedList的整体实现进行大致说明:
LinkedList实际上是通过双向链表去实现的。既然是双向链表,那么它的顺序访问会非常高效,而随机访问效率比较低。
既然LinkedList是通过双向链表的,但是它也实现了List接口{也就是说,它实现了get(int
location)、remove(int
location)等“根据索引值来获取、删除节点的函数”}。LinkedList是如何实现List的这些接口的,如何将“双向链表和索引值联系起来的”?
实际原理非常简单,它就是通过一个计数索引值来实现的。例如,当我们调用get(int
location)时,首先会比较“location”和“双向链表长度的1/2”;若前者大,则从链表头开始往后查找,直到location位置;否则,从链表末尾开始先前查找,直到location位置。
这就是“双线链表和索引值联系起来”的方法。
好了,接下来开始阅读源码(只要理解双向链表,那么LinkedList的源码很容易理解的)。
有关LinkedList在JDK1.6和JDK1.7的区别以及优化,参看 JDK1.7-LinkedList循环链表优化,这里列出是1.7的源码
其中 Node:

private static class Node{ E item; Node next; Node prev; Node(Node prev, E element, Node next) { this.item = element; this.next = next; this.prev = prev; } }




1 public class LinkedList2 extends AbstractSequentialList 3 implements List , Deque , Cloneable, java.io.Serializable 4 { 5 transient int size = 0; 6 7 /** 8 * Pointer to first node. 9 * Invariant: (first == null && last == null) || 10 * (first.prev == null && first.item != null) 11 */ 12 transient Node first; 13 14 /** 15 * Pointer to last node. 16 * Invariant: (first == null && last == null) || 17 * (last.next == null && last.item != null) 18 */ 19 transient Node last; 20 21 /** 22 * Constructs an empty list. 23 */ 24 public LinkedList() { 25 } 26 27 /** 28 * Constructs a list containing the elements of the specified 29 * collection, in the order they are returned by the collection‘s 30 * iterator. 31 * 32 * @param c the collection whose elements are to be placed into this list 33 * @throws NullPointerException if the specified collection is null 34 */ 35 public LinkedList(Collection extends E> c) { 36 this(); 37 addAll(c); 38 } 39 40 /** 41 * Links e as first element. 42 */ 43 private void linkFirst(E e) { 44 final Node f = first; 45 final Node newNode = new Node(null, e, f); 46 first = newNode; 47 if (f == null) 48 last = newNode; 49 else 50 f.prev = newNode; 51 size++; 52 modCount++; 53 } 54 55 /** 56 * Links e as last element. 57 */ 58 void linkLast(E e) { 59 final Node l = last; 60 final Node newNode = new Node(l, e, null); 61 last = newNode; 62 if (l == null) 63 first = newNode; 64 else 65 l.next = newNode; 66 size++; 67 modCount++; 68 } 69 70 /** 71 * Inserts element e before non-null Node succ. 72 */ 73 void linkBefore(E e, Node succ) { 74 // assert succ != null; 75 final Node pred = succ.prev; 76 final Node newNode = new Node(pred, e, succ); 77 succ.prev = newNode; 78 if (pred == null) 79 first = newNode; 80 else 81 pred.next = newNode; 82 size++; 83 modCount++; 84 } 85 86 /** 87 * Unlinks non-null first node f. 88 */ 89 private E unlinkFirst(Node f) { 90 // assert f == first && f != null; 91 final E element = f.item; 92 final Node next = f.next; 93 f.item = null; 94 f.next = null; // help GC 95 first = next; 96 if (next == null) 97 last = null; 98 else 99 next.prev = null; 100 size--; 101 modCount++; 102 return element; 103 } 104 105 /** 106 * Unlinks non-null last node l. 107 */ 108 private E unlinkLast(Node l) { 109 // assert l == last && l != null; 110 final E element = l.item; 111 final Node prev = l.prev; 112 l.item = null; 113 l.prev = null; // help GC 114 last = prev; 115 if (prev == null) 116 first = null; 117 else 118 prev.next = null; 119 size--; 120 modCount++; 121 return element; 122 } 123 124 /** 125 * Unlinks non-null node x. 126 */ 127 E unlink(Node x) { 128 // assert x != null; 129 final E element = x.item; 130 final Node next = x.next; 131 final Node prev = x.prev; 132 133 if (prev == null) { 134 first = next; 135 } else { 136 prev.next = next; 137 x.prev = null; 138 } 139 140 if (next == null) { 141 last = prev; 142 } else { 143 next.prev = prev; 144 x.next = null; 145 } 146 147 x.item = null; 148 size--; 149 modCount++; 150 return element; 151 } 152 153 /** 154 * Returns the first element in this list. 155 * 156 * @return the first element in this list 157 * @throws NoSuchElementException if this list is empty 158 */ 159 public E getFirst() { 160 final Node f = first; 161 if (f == null) 162 throw new NoSuchElementException(); 163 return f.item; 164 } 165 166 /** 167 * Returns the last element in this list. 168 * 169 * @return the last element in this list 170 * @throws NoSuchElementException if this list is empty 171 */ 172 public E getLast() { 173 final Node l = last; 174 if (l == null) 175 throw new NoSuchElementException(); 176 return l.item; 177 } 178 179 /** 180 * Removes and returns the first element from this list. 181 * 182 * @return the first element from this list 183 * @throws NoSuchElementException if this list is empty 184 */ 185 public E removeFirst() { 186 final Node f = first; 187 if (f == null) 188 throw new NoSuchElementException(); 189 return unlinkFirst(f); 190 } 191 192 /** 193 * Removes and returns the last element from this list. 194 * 195 * @return the last element from this list 196 * @throws NoSuchElementException if this list is empty 197 */ 198 public E removeLast() { 199 final Node l = last; 200 if (l == null) 201 throw new NoSuchElementException(); 202 return unlinkLast(l); 203 } 204 205 /** 206 * Inserts the specified element at the beginning of this list. 207 * 208 * @param e the element to add 209 */ 210 public void addFirst(E e) { 211 linkFirst(e); 212 } 213 214 /** 215 * Appends the specified element to the end of this list. 216 * 217 * This method is equivalent to {
@link #add}. 218 * 219 * @param e the element to add 220 */ 221 public void addLast(E e) { 222 linkLast(e); 223 } 224 225 /** 226 * Returns {@code true} if this list contains the specified element. 227 * More formally, returns {@code true} if and only if this list contains 228 * at least one element {@code e} such that 229 * (o==null ? e==null : o.equals(e)). 230 * 231 * @param o element whose presence in this list is to be tested 232 * @return {@code true} if this list contains the specified element 233 */ 234 public boolean contains(Object o) { 235 return indexOf(o) != -1; 236 } 237 238 /** 239 * Returns the number of elements in this list. 240 * 241 * @return the number of elements in this list 242 */ 243 public int size() { 244 return size; 245 } 246 247 /** 248 * Appends the specified element to the end of this list. 249 * 250 *This method is equivalent to {
@link #addLast}. 251 * 252 * @param e element to be appended to this list 253 * @return {@code true} (as specified by {@link Collection#add}) 254 */ 255 public boolean add(E e) { 256 linkLast(e); 257 return true; 258 } 259 260 /** 261 * Removes the first occurrence of the specified element from this list, 262 * if it is present. If this list does not contain the element, it is 263 * unchanged. More formally, removes the element with the lowest index 264 * {@code i} such that 265 * (o==null ? get(i)==null : o.equals(get(i))) 266 * (if such an element exists). Returns {@code true} if this list 267 * contained the specified element (or equivalently, if this list 268 * changed as a result of the call). 269 * 270 * @param o element to be removed from this list, if present 271 * @return {@code true} if this list contained the specified element 272 */ 273 public boolean remove(Object o) { 274 if (o == null) { 275 for (Nodex = first; x != null; x = x.next) { 276 if (x.item == null) { 277 unlink(x); 278 return true; 279 } 280 } 281 } else { 282 for (Node x = first; x != null; x = x.next) { 283 if (o.equals(x.item)) { 284 unlink(x); 285 return true; 286 } 287 } 288 } 289 return false; 290 } 291 292 /** 293 * Appends all of the elements in the specified collection to the end of 294 * this list, in the order that they are returned by the specified 295 * collection‘s iterator. The behavior of this operation is undefined if 296 * the specified collection is modified while the operation is in 297 * progress. (Note that this will occur if the specified collection is 298 * this list, and it‘s nonempty.) 299 * 300 * @param c collection containing elements to be added to this list 301 * @return {@code true} if this list changed as a result of the call 302 * @throws NullPointerException if the specified collection is null 303 */ 304 public boolean addAll(Collection extends E> c) { 305 return addAll(size, c); 306 } 307 308 /** 309 * Inserts all of the elements in the specified collection into this 310 * list, starting at the specified position. Shifts the element 311 * currently at that position (if any) and any subsequent elements to 312 * the right (increases their indices). The new elements will appear 313 * in the list in the order that they are returned by the 314 * specified collection‘s iterator. 315 * 316 * @param index index at which to insert the first element 317 * from the specified collection 318 * @param c collection containing elements to be added to this list 319 * @return {@code true} if this list changed as a result of the call 320 * @throws IndexOutOfBoundsException {@inheritDoc} 321 * @throws NullPointerException if the specified collection is null 322 */ 323 public boolean addAll(int index, Collection extends E> c) { 324 checkPositionIndex(index); 325 326 Object[] a = c.toArray(); 327 int numNew = a.length; 328 if (numNew == 0) 329 return false; 330 331 Node pred, succ; 332 if (index == size) { 333 succ = null; 334 pred = last; 335 } else { 336 succ = node(index); 337 pred = succ.prev; 338 } 339 340 for (Object o : a) { 341 @SuppressWarnings("unchecked") E e = (E) o; 342 Node newNode = new Node(pred, e, null); 343 if (pred == null) 344 first = newNode; 345 else 346 pred.next = newNode; 347 pred = newNode; 348 } 349 350 if (succ == null) { 351 last = pred; 352 } else { 353 pred.next = succ; 354 succ.prev = pred; 355 } 356 357 size += numNew; 358 modCount++; 359 return true; 360 } 361 362 /** 363 * Removes all of the elements from this list. 364 * The list will be empty after this call returns. 365 */ 366 public void clear() { 367 // Clearing all of the links between nodes is "unnecessary", but: 368 // - helps a generational GC if the discarded nodes inhabit 369 // more than one generation 370 // - is sure to free memory even if there is a reachable Iterator 371 for (Node x = first; x != null; ) { 372 Node next = x.next; 373 x.item = null; 374 x.next = null; 375 x.prev = null; 376 x = next; 377 } 378 first = last = null; 379 size = 0; 380 modCount++; 381 } 382 383 384 // Positional Access Operations 385 386 /** 387 * Returns the element at the specified position in this list. 388 * 389 * @param index index of the element to return 390 * @return the element at the specified position in this list 391 * @throws IndexOutOfBoundsException {@inheritDoc} 392 */ 393 public E get(int index) { 394 checkElementIndex(index); 395 return node(index).item; 396 } 397 398 /** 399 * Replaces the element at the specified position in this list with the 400 * specified element. 401 * 402 * @param index index of the element to replace 403 * @param element element to be stored at the specified position 404 * @return the element previously at the specified position 405 * @throws IndexOutOfBoundsException {@inheritDoc} 406 */ 407 public E set(int index, E element) { 408 checkElementIndex(index); 409 Node x = node(index); 410 E oldVal = x.item; 411 x.item = element; 412 return oldVal; 413 } 414 415 /** 416 * Inserts the specified element at the specified position in this list. 417 * Shifts the element currently at that position (if any) and any 418 * subsequent elements to the right (adds one to their indices). 419 * 420 * @param index index at which the specified element is to be inserted 421 * @param element element to be inserted 422 * @throws IndexOutOfBoundsException {@inheritDoc} 423 */ 424 public void add(int index, E element) { 425 checkPositionIndex(index); 426 427 if (index == size) 428 linkLast(element); 429 else 430 linkBefore(element, node(index)); 431 } 432 433 /** 434 * Removes the element at the specified position in this list. Shifts any 435 * subsequent elements to the left (subtracts one from their indices). 436 * Returns the element that was removed from the list. 437 * 438 * @param index the index of the element to be removed 439 * @return the element previously at the specified position 440 * @throws IndexOutOfBoundsException {@inheritDoc} 441 */ 442 public E remove(int index) { 443 checkElementIndex(index); 444 return unlink(node(index)); 445 } 446 447 /** 448 * Tells if the argument is the index of an existing element. 449 */ 450 private boolean isElementIndex(int index) { 451 return index >= 0 && index size; 452 } 453 454 /** 455 * Tells if the argument is the index of a valid position for an 456 * iterator or an add operation. 457 */ 458 private boolean isPositionIndex(int index) { 459 return index >= 0 && index size; 460 } 461 462 /** 463 * Constructs an IndexOutOfBoundsException detail message. 464 * Of the many possible refactorings of the error handling code, 465 * this "outlining" performs best with both server and client VMs. 466 */ 467 private String outOfBoundsMsg(int index) { 468 return "Index: "+index+", Size: "+size; 469 } 470 471 private void checkElementIndex(int index) { 472 if (!isElementIndex(index)) 473 throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); 474 } 475 476 private void checkPositionIndex(int index) { 477 if (!isPositionIndex(index)) 478 throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); 479 } 480 481 /** 482 * Returns the (non-null) Node at the specified element index. 483 */ 484 Node node(int index) { 485 // assert isElementIndex(index); 486 487 if (index > 1)) { 488 Node x = first; 489 for (int i = 0; i ) 490 x = x.next; 491 return x; 492 } else { 493 Node x = last; 494 for (int i = size - 1; i > index; i--) 495 x = x.prev; 496 return x; 497 } 498 } 499 500 // Search Operations 501 502 /** 503 * Returns the index of the first occurrence of the specified element 504 * in this list, or -1 if this list does not contain the element. 505 * More formally, returns the lowest index {@code i} such that 506 * (o==null ? get(i)==null : o.equals(get(i))), 507 * or -1 if there is no such index. 508 * 509 * @param o element to search for 510 * @return the index of the first occurrence of the specified element in 511 * this list, or -1 if this list does not contain the element 512 */ 513 public int indexOf(Object o) { 514 int index = 0; 515 if (o == null) { 516 for (Node x = first; x != null; x = x.next) { 517 if (x.item == null) 518 return index; 519 index++; 520 } 521 } else { 522 for (Node x = first; x != null; x = x.next) { 523 if (o.equals(x.item)) 524 return index; 525 index++; 526 } 527 } 528 return -1; 529 } 530 531 /** 532 * Returns the index of the last occurrence of the specified element &l
文章标题:Java 集合系列 04 LinkedList详细介绍(源码解析)和使用示例
文章链接:http://soscw.com/essay/21835.html