Python科学计算系列9—逻辑代数
2020-12-22 17:29
标签:函数 运行 pos png col loading mamicode pre lazy 1.基本定理的验证 代码如下: 运行结果: 2.化简逻辑函数 代码如下: 运行结果: Python科学计算系列9—逻辑代数 标签:函数 运行 pos png col loading mamicode pre lazy 原文地址:https://www.cnblogs.com/wanyuan/p/13210134.htmlfrom sympy import *
A, B, C = symbols(‘A B C‘)
# 重叠律
# A·A=A A+A=A
print(to_cnf(A | A))
print(to_cnf(A & A))
# 结合律
print(to_cnf(~(A | B) | C))
# 分配律
# A+B·C=(A+B)(A+C)
print(to_dnf(A & (B | C)))
# 反演律
print(to_dnf(~(A | B)))
print(to_dnf(~(A & B)))
# 还原律
print(to_cnf(~(~A)))
from sympy import *
A, B, C = symbols(‘A B C‘)
# 化简逻辑函数(!A+!B+!C)(!A+!B+!C)
f1 = simplify_logic((~A & ~B & ~C) | (~A & ~B & C))
print(f1)
# 化简最小项之和为析取范式
minterms1 = [0, 7]
f2 = SOPform([A, B, C], minterms1)
print(f2)
# 化简最小项之和为合取范式
minterms2 = [[1, 0, 1], [1, 1, 0], [1, 1, 1]]
f3 = POSform([A, B, C], minterms2)
print(f3)
# 化简最小项之和为析取范式(第7项任取)
minterms3 = [[1, 0, 1], [1, 1, 0]]
dontcares = [7]
f4 = SOPform([A, B, C], minterms3, dontcares)
print(f4)