[pytorch] API总结、速查

2021-01-05 18:28

阅读:341

标签:numpy   bit   随机数   cal   lamp   als   gic   none   size   

torch.numel(input) → int

Returns the total number of elements in the input tensor. Document

torch.from_numpy(ndarray) → Tensor

Creates a Tensor from a numpy.ndarray.

torch.range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

torch.range(1, 4) -> tensor([ 1., 2., 3., 4.])

torch.heaviside(input, values, *, out=None) → Tensor

>>> values = torch.tensor([0.5])
>>> torch.heaviside(input, values)
tensor([0.0000, 0.5000, 1.0000])
>>> values = torch.tensor([1.2, -2.0, 3.5])
>>> torch.heaviside(input, values)
tensor([0., -2., 1.])

torch.cat

torch.chunk

torch.stack

torch.gather

torch.index_select

torch.masked_select

torch.narrow(input, dim, start, length) → Tensor

torch.split(tensor, split_size_or_sections, dim=0)

torch.t

torch.take(input, index)

torch.transpose(input, dim0, dim1)

torch.unbind(input, dim=0)

torch.unsqueeze(input, dim)

torch.where(condition, x, y) → Tensor

>>> x = torch.randn(3, 2)
>>> y = torch.ones(3, 2)
>>> x
tensor([[-0.4620,  0.3139],
        [ 0.3898, -0.7197],
        [ 0.0478, -0.1657]])
>>> torch.where(x > 0, x, y)
tensor([[ 1.0000,  0.3139],
        [ 0.3898,  1.0000],
        [ 0.0478,  1.0000]])
>>> x = torch.randn(2, 2, dtype=torch.double)
>>> x
tensor([[ 1.0779,  0.0383],
        [-0.8785, -1.1089]], dtype=torch.float64)
>>> torch.where(x > 0, x, 0.)
tensor([[1.0779, 0.0383],
        [0.0000, 0.0000]], dtype=torch.float64)

数学运算

abs/absolute | acos/arccos | add | bitwise_not | bitwise_and | bitwise_or | bitwise_xor | ceil | clamp/clip | div/divide | exp
| trunk/fix | floor | fmod | logical_and/logical_or/logical_xor | mul/multiply | lerp | neg/negative | pow | round | sign | sqrt |...

其他

随机数生成器

[pytorch] API总结、速查

标签:numpy   bit   随机数   cal   lamp   als   gic   none   size   

原文地址:https://www.cnblogs.com/geoli/p/14223122.html


评论


亲,登录后才可以留言!