归并排序

2021-01-24 22:15

阅读:564

标签:public   版本   int   时间   性能   拷贝   alt   代码   合并   

基本思想

  归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。

分而治之

技术图片

   可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。阶段可以理解为就是递归拆分子序列的过程,递归深度为log2n。

合并相邻有序子序列

  再来看看阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤。

技术图片

技术图片

代码实现

package sortdemo;

import java.util.Arrays;

/**
 * Created by chengxiao on 2016/12/8.
 */
public class MergeSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void sort(int []arr){
        int []temp = new int[arr.length];//在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间
        sort(arr,0,arr.length-1,temp);
    }
    private static void sort(int[] arr,int left,int right,int []temp){
        if(leftright){
            int mid = (left+right)/2;
            sort(arr,left,mid,temp);//左边归并排序,使得左子序列有序
            sort(arr,mid+1,right,temp);//右边归并排序,使得右子序列有序
            merge(arr,left,mid,right,temp);//将两个有序子数组合并操作
        }
    }
    private static void merge(int[] arr,int left,int mid,int right,int[] temp){
        int i = left;//左序列指针
        int j = mid+1;//右序列指针
        int t = 0;//临时数组指针
        while (iright){
            if(arr[i]arr[j]){
                temp[t++] = arr[i++];
            }else {
                temp[t++] = arr[j++];
            }
        }
        while(i//将左边剩余元素填充进temp中
            temp[t++] = arr[i++];
        }
        while(j//将右序列剩余元素填充进temp中
            temp[t++] = arr[j++];
        }
        t = 0;
        //将temp中的元素全部拷贝到原数组中
        while(left  right){
            arr[left++] = temp[t++];
        }
    }
}

执行结果

[1, 2, 3, 4, 5, 6, 7, 8, 9]

最后

  归并排序是稳定排序,它也是一种十分高效的排序,能利用完全二叉树特性的排序一般性能都不会太差。java中Arrays.sort()采用了一种名为TimSort的排序算法,就是归并排序的优化版本。从上文的图中可看出,每次合并操作的平均时间复杂度为O(n),而完全二叉树的深度为|log2n|。总的平均时间复杂度为O(nlogn)。而且,归并排序的最好,最坏,平均时间复杂度均为O(nlogn)。

归并排序

标签:public   版本   int   时间   性能   拷贝   alt   代码   合并   

原文地址:https://www.cnblogs.com/cxy2020/p/12863556.html


评论


亲,登录后才可以留言!