Java集合面试题汇总篇

2021-01-28 04:15

阅读:459

标签:atp   重要   overflow   mac   bug   lca   github   htable   exist   

文章收录在 GitHub JavaKeeper ,N线互联网开发必备技能兵器谱

作为一位小菜 ”一面面试官“,面试过程中,我肯定会问 Java 集合的内容,同时作为求职者,也肯定会被问到集合,所以整理下 Java 集合面试题

技术图片

说说常见的集合有哪些吧?

HashMap说一下,其中的Key需要重写hashCode()和equals()吗?

HashMap中key和value可以为null吗?允许几个为null呀?

HashMap线程安全吗?ConcurrentHashMap和hashTable有什么区别?

List和Set说一下,现在有一个ArrayList,对其中的所有元素按照某一属性大小排序,应该怎么做?

ArrayList 和 Vector 的区别

list 可以删除吗,遍历的时候可以删除吗,为什么

面向对象语言对事物的体现都是以对象的形式,所以为了方便对多个对象的操作,需要将对象进行存储,集合就是存储对象最常用的一种方式,也叫容器。

技术图片

从上面的集合框架图可以看到,Java 集合框架主要包括两种类型的容器

  • 一种是集合(Collection),存储一个元素集合
  • 另一种是图(Map),存储键/值对映射。

Collection 接口又有 3 种子类型,List、Set 和 Queue,再下面是一些抽象类,最后是具体实现类,常用的有 ArrayList、LinkedList、HashSet、LinkedHashSet、HashMap、LinkedHashMap 等等。

集合框架是一个用来代表和操纵集合的统一架构。所有的集合框架都包含如下内容:

  • 接口:是代表集合的抽象数据类型。例如 Collection、List、Set、Map 等。之所以定义多个接口,是为了以不同的方式操作集合对象

  • 实现(类):是集合接口的具体实现。从本质上讲,它们是可重复使用的数据结构,例如:ArrayList、LinkedList、HashSet、HashMap。

  • 算法:是实现集合接口的对象里的方法执行的一些有用的计算,例如:搜索和排序。这些算法被称为多态,那是因为相同的方法可以在相似的接口上有着不同的实现。


说说常用的集合有哪些吧?

Map 接口和 Collection 接口是所有集合框架的父接口:

  1. Collection接口的子接口包括:Set、List、Queue
  2. List是有序的允许有重复元素的Collection,实现类主要有:ArrayList、LinkedList、Stack以及Vector等
  3. Set是一种不包含重复元素且无序的Collection,实现类主要有:HashSet、TreeSet、LinkedHashSet等
  4. Map没有继承Collection接口,Map提供key到value的映射。实现类主要有:HashMap、TreeMap、Hashtable、ConcurrentHashMap 以及 Properties 等

ArrayList 和 Vector 的区别

相同点:

  • ArrayList 和 Vector 都是继承了相同的父类和实现了相同的接口(都实现了List,有序、允许重复和null)

    extends AbstractList
            implements List, RandomAccess, Cloneable, java.io.Serializable
    
  • 底层都是数组(Object[])实现的

  • 初始默认长度都为10

不同点:

  • 同步性:Vector 中的 public 方法多数添加了 synchronized 关键字、以确保方法同步、也即是 Vector 线程安全、ArrayList 线程不安全

  • 性能:Vector 存在 synchronized 的锁等待情况、需要等待释放锁这个过程、所以性能相对较差

  • 扩容大小:ArrayList在底层数组不够用时在原来的基础上扩展 0.5 倍,Vector默认是扩展 1 倍

    扩容机制,扩容方法其实就是新创建一个数组,然后将旧数组的元素都复制到新数组里面。其底层的扩容方法都在 grow() 中(基于JDK8)

    • ArrayList 的 grow(),在满足扩容条件时、ArrayList以1.5 倍的方式在扩容(oldCapacity >> 1 ,右移运算,相当于除以 2,结果为二分之一的 oldCapacity)

      private void grow(int minCapacity) {
          // overflow-conscious code
          int oldCapacity = elementData.length;
          //newCapacity = oldCapacity + O.5*oldCapacity,此处扩容0.5倍
          int newCapacity = oldCapacity + (oldCapacity >> 1); 
          if (newCapacity - minCapacity  0)
              newCapacity = hugeCapacity(minCapacity);
          // minCapacity is usually close to size, so this is a win:
          elementData = Arrays.copyOf(elementData, newCapacity);
      }
      
    • Vector 的 grow(),Vector 比 ArrayList多一个属性,扩展因子capacityIncrement,可以扩容大小。当扩容容量增量大于0时、新数组长度为原数组长度+扩容容量增量、否则新数组长度为原数组长度的2

      private void grow(int minCapacity) {
          // overflow-conscious code
          int oldCapacity = elementData.length;
          //
          int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
                                           capacityIncrement : oldCapacity);
          if (newCapacity - minCapacity  0)
              newCapacity = hugeCapacity(minCapacity);
          elementData = Arrays.copyOf(elementData, newCapacity);
      }
      

ArrayList 与 LinkedList 区别

  • 是否保证线程安全: ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全;
  • 底层数据结构: Arraylist 底层使用的是 Object 数组;LinkedList 底层使用的是双向循环链表数据结构;
  • 插入和删除是否受元素位置的影响:
    • ArrayList 采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。 比如:执行 add(E e)方法的时候, ArrayList 会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是O(1)。但是如果要在指定位置 i 插入和删除元素的话( add(intindex,E element))时间复杂度就为 O(n-i)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。
    • LinkedList 采用链表存储,所以插入,删除元素时间复杂度不受元素位置的影响,都是近似 $O(1)$,而数组为近似 $O(n)$。
    • ArrayList 一般应用于查询较多但插入以及删除较少情况,如果插入以及删除较多则建议使用 LinkedList
  • 是否支持快速随机访问: LinkedList 不支持高效的随机元素访问,而 ArrayList 实现了 RandomAccess 接口,所以有随机访问功能。快速随机访问就是通过元素的序号快速获取元素对象(对应于 get(intindex)方法)。
  • 内存空间占用: ArrayList 的空间浪费主要体现在在 list 列表的结尾会预留一定的容量空间,而 LinkedList 的空间花费则体现在它的每一个元素都需要消耗比 ArrayList 更多的空间(因为要存放直接后继和直接前驱以及数据)。

高级工程师的我,可不得看看源码,具体分析下:

  • ArrayList工作原理其实很简单,底层是动态数组,每次创建一个 ArrayList 实例时会分配一个初始容量(没有指定初始容量的话,默认是 10),以add方法为例,如果没有指定初始容量,当执行add方法,先判断当前数组是否为空,如果为空则给保存对象的数组分配一个最小容量,默认为10。当添加大容量元素时,会先增加数组的大小,以提高添加的效率;

  • LinkedList 是有序并且支持元素重复的集合,底层是基于双向链表的,即每个节点既包含指向其后继的引用也包括指向其前驱的引用。链表无容量限制,但双向链表本身使用了更多空间,也需要额外的链表指针操作。按下标访问元素 get(i)/set(i,e) 要悲剧的遍历链表将指针移动到位(如果i>数组大小的一半,会从末尾移起)。插入、删除元素时修改前后节点的指针即可,但还是要遍历部分链表的指针才能移动到下标所指的位置,只有在链表两头的操作add()addFirst()removeLast()或用 iterator() 上的 remove() 能省掉指针的移动。此外 LinkedList 还实现了 Deque(继承自Queue接口)接口,可以当做队列使用。

不会囊括所有方法,只是为了学习,记录思想。

ArrayList 和 LinkedList 两者都实现了 List 接口

public class ArrayList extends AbstractList
        implements List, RandomAccess, Cloneable, java.io.Serializable{
public class LinkedList
    extends AbstractSequentialList
    implements List, Deque, Cloneable, java.io.Serializable

构造器

ArrayList 提供了 3 个构造器,①无参构造器 ②带初始容量构造器 ③参数为集合构造器

public class ArrayList extends AbstractList
        implements List, RandomAccess, Cloneable, java.io.Serializable{
   
public ArrayList(int initialCapacity) {
   if (initialCapacity > 0) {
       // 创建初始容量的数组
     this.elementData = new Object[initialCapacity];
    } else if (initialCapacity == 0) {
     this.elementData = EMPTY_ELEMENTDATA;
    } else {
   throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity);
  }
}
public ArrayList() {
  // 默认为空数组
  this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
    
public ArrayList(Collection extends E> c) { //...}       
}

LinkedList 提供了 2 个构造器,因为基于链表,所以也就没有初始化大小,也没有扩容的机制,就是一直在前面或者后面插插插~~

public LinkedList() {
}

public LinkedList(Collection extends E> c) {
    this();
    addAll(c);
}
// LinkedList 既然作为链表,那么肯定会有节点
private static class Node {
    E item;
    Node next;
    Node prev;

    Node(Node prev, E element, Node next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

插入

ArrayList:

public boolean add(E e) {
    // 确保数组的容量,保证可以添加该元素
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    // 将该元素放入数组中
    elementData[size++] = e;
    return true;
}
private void ensureCapacityInternal(int minCapacity) {
    // 如果数组是空的,那么会初始化该数组
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        // DEFAULT_CAPACITY 为 10,所以调用无参默认 ArrayList 构造方法初始化的话,默认的数组容量为 10
        minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
    }

    ensureExplicitCapacity(minCapacity);
}

private void ensureExplicitCapacity(int minCapacity) {
    modCount++;

    // 确保数组的容量,如果不够的话,调用 grow 方法扩容
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);
}
//扩容具体的方法
private void grow(int minCapacity) {
    // 当前数组的容量
    int oldCapacity = elementData.length;
    // 新数组扩容为原来容量的 1.5 倍
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    // 如果新数组扩容容量还是比最少需要的容量还要小的话,就设置扩充容量为最小需要的容量
    if (newCapacity - minCapacity  0)
        newCapacity = hugeCapacity(minCapacity);
    // minCapacity is usually close to size, so this is a win:
    // 复制元素到新的数组中
    elementData = Arrays.copyOf(elementData, newCapacity);
}

当然也可以插入指定位置,还有一个重载的方法 add(int index, E element)

public void add(int index, E element) {
    // 判断 index 有没有超出索引的范围
    rangeCheckForAdd(index);
    // 和之前的操作是一样的,都是保证数组的容量足够
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    // 将指定位置及其后面数据向后移动一位
    System.arraycopy(elementData, index, elementData, index + 1,
                     size - index);
    // 将该元素添加到指定的数组位置
    elementData[index] = element;
    // ArrayList 的大小改变
    size++;
}

可以看到每次插入指定位置都要移动元素,效率较低。

再来看 LinkedList 的插入,也有插入末尾,插入指定位置两种,由于基于链表,肯定得先有个 Node

private static class Node {
    E item;
    Node next;
    Node prev;

    Node(Node prev, E element, Node next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}
public boolean add(E e) {
    // 直接往队尾加元素
    linkLast(e);
    return true;
}

void linkLast(E e) {
    // 保存原来链表尾部节点,last 是全局变量,用来表示队尾元素
    final Node l = last;
    // 为该元素 e 新建一个节点
    final Node newNode = new Node(l, e, null);
    // 将新节点设为队尾
    last = newNode;
    // 如果原来的队尾元素为空,那么说明原来的整个列表是空的,就把新节点赋值给头结点
    if (l == null)
        first = newNode;
    else
    // 原来尾结点的后面为新生成的结点
        l.next = newNode;
    // 节点数 +1
    size++;
    modCount++;
}

public void add(int index, E element) {
    // 检查 index 有没有超出索引范围
    checkPositionIndex(index);
    // 如果追加到尾部,那么就跟 add(E e) 一样了
    if (index == size)
        linkLast(element);
    else
    // 否则就是插在其他位置
     linkBefore(element, node(index));
}

//linkBefore方法中调用了这个node方法,类似二分查找的优化
Node node(int index) {
    // assert isElementIndex(index);
    // 如果 index 在前半段,从前往后遍历获取 node
    if (index > 1)) {
        Node x = first;
        for (int i = 0; i  x = last;
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}

void linkBefore(E e, Node succ) {
    // assert succ != null;
    // 保存 index 节点的前节点
    final Node pred = succ.prev;
    // 新建一个目标节点
    final Node newNode = new Node(pred, e, succ);
    succ.prev = newNode;
    // 如果是在开头处插入的话
    if (pred == null)
        first = newNode;
    else
        pred.next = newNode;
    size++;
    modCount++;
}

获取

ArrayList 的 get() 方法很简单,就是在数组中返回指定位置的元素即可,所以效率很高

public E get(int index) {
    // 检查 index 有没有超出索引的范围
    rangeCheck(index);
    // 返回指定位置的元素
    return elementData(index);
}

LinkedList 的 get() 方法,就是在内部调用了上边看到的 node() 方法,判断在前半段还是在后半段,然后遍历得到即可。

public E get(int index) {
    checkElementIndex(index);
    return node(index).item;
}

HashMap的底层实现

什么时候会使用HashMap?他有什么特点?

你知道HashMap的工作原理吗?

你知道get和put的原理吗?equals()和hashCode()的都有什么作用?

你知道hash的实现吗?为什么要这样实现?

如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办?

HashMap 在 JDK 7 和 JDK8 中的实现方式略有不同。分开记录。

深入 HahsMap 之前,先要了解的概念

  1. initialCapacity:初始容量。指的是 HashMap 集合初始化的时候自身的容量。可以在构造方法中指定;如果不指定的话,总容量默认值是 16 。需要注意的是初始容量必须是 2 的幂次方。(1.7中,已知HashMap中将要存放的KV个数的时候,设置一个合理的初始化容量可以有效的提高性能

    static final int DEFAULT_INITIAL_CAPACITY = 1 
  2. size:当前 HashMap 中已经存储着的键值对数量,即 HashMap.size()

  3. loadFactor:加载因子。所谓的加载因子就是 HashMap (当前的容量/总容量) 到达一定值的时候,HashMap 会实施扩容。加载因子也可以通过构造方法中指定,默认的值是 0.75 。举个例子,假设有一个 HashMap 的初始容量为 16 ,那么扩容的阀值就是 0.75 * 16 = 12 。也就是说,在你打算存入第 13 个值的时候,HashMap 会先执行扩容。

  4. threshold:扩容阀值。即 扩容阀值 = HashMap 总容量 * 加载因子。当前 HashMap 的容量大于或等于扩容阀值的时候就会去执行扩容。扩容的容量为当前 HashMap 总容量的两倍。比如,当前 HashMap 的总容量为 16 ,那么扩容之后为 32 。

  5. table:Entry 数组。我们都知道 HashMap 内部存储 key/value 是通过 Entry 这个介质来实现的。而 table 就是 Entry 数组。

JDK1.7 实现

JDK1.7 中 HashMap 由 数组+链表 组成(“链表散列” 即数组和链表的结合体),数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(HashMap 采用 “拉链法也就是链地址法” 解决冲突),如果定位到的数组位置不含链表(当前 entry 的 next 指向 null ),那么对于查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度依然为 O(1),因为最新的 Entry 会插入链表头部,即需要简单改变引用链即可,而对于查找操作来讲,此时就需要遍历链表,然后通过 key 对象的 equals 方法逐一比对查找。

所谓 “拉链法” 就是将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

技术图片

源码解析

构造方法

《阿里巴巴 Java 开发手册》推荐集合初始化时,指定集合初始值大小。(说明:HashMap 使用HashMap(int initialCapacity) 初始化)建议原因: https://www.zhihu.com/question/314006228/answer/611170521

// 默认的构造方法使用的都是默认的初始容量和加载因子
// DEFAULT_INITIAL_CAPACITY = 16,DEFAULT_LOAD_FACTOR = 0.75f
public HashMap() {
    this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}

// 可以指定初始容量,并且使用默认的加载因子
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

public HashMap(int initialCapacity, float loadFactor) {
    // 对初始容量的值判断
    if (initialCapacity  MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor  m) {
  this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
  inflateTable(threshold);
  putAllForCreate(m);
}

HashMap 的前 3 个构造方法最后都会去调用 HashMap(int initialCapacity, float loadFactor) 。在其内部去设置初始容量和加载因子。而最后的 init() 是空方法,主要给子类实现,比如LinkedHashMap。

put() 方法
public V put(K key, V value) {
    // 如果 table 数组为空时先创建数组,并且设置扩容阀值
    if (table == EMPTY_TABLE) {
        inflateTable(threshold);
    }
    // 如果 key 为空时,调用 putForNullKey 方法特殊处理
    if (key == null)
        return putForNullKey(value);
    // 计算 key 的哈希值
    int hash = hash(key);
    // 根据计算出来的哈希值和当前数组的长度计算在数组中的索引
    int i = indexFor(hash, table.length);
    // 先遍历该数组索引下的整条链表
    // 如果该 key 之前已经在 HashMap 中存储了的话,直接替换对应的 value 值即可
    for (Entry e = table[i]; e != null; e = e.next) {
        Object k;
       //先判断hash值是否一样,如果一样,再判断key是否一样,不同对象的hash值可能一样
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }

    modCount++;
    // 如果该 key 之前没有被存储过,那么就进入 addEntry 方法
    addEntry(hash, key, value, i);
    return null;
}

void addEntry(int hash, K key, V value, int bucketIndex) {
    // 当前容量大于或等于扩容阀值的时候,会执行扩容
    if ((size >= threshold) && (null != table[bucketIndex])) {
        // 扩容为原来容量的两倍
        resize(2 * table.length);
        // 重新计算哈希值
        hash = (null != key) ? hash(key) : 0;
        // 重新得到在新数组中的索引
        bucketIndex = indexFor(hash, table.length);
    }
    // 创建节点
    createEntry(hash, key, value, bucketIndex);
}

//扩容,创建了一个新的数组,然后把数据全部复制过去,再把新数组的引用赋给 table
void resize(int newCapacity) {
    Entry[] oldTable = table;  //引用扩容前的Entry数组
    int oldCapacity = oldTable.length;
    if (oldCapacity == MAXIMUM_CAPACITY) { //扩容前的数组大小如果已经达到最大(2^30)了
        threshold = Integer.MAX_VALUE;  //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
        return;
    }
    // 创建新的 entry 数组
    Entry[] newTable = new Entry[newCapacity];
    // 将旧 entry 数组中的数据复制到新 entry 数组中
    transfer(newTable, initHashSeedAsNeeded(newCapacity));
    // 将新数组的引用赋给 table
    table = newTable;
    // 计算新的扩容阀值
    threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

void transfer(Entry[] newTable) {
     Entry[] src = table;                   //src引用了旧的Entry数组
     int newCapacity = newTable.length;
     for (int j = 0; j  e = src[j];             //取得旧Entry数组的每个元素
         if (e != null) {
             src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
             do {
                 Entry next = e.next;
                 int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
                 e.next = newTable[i]; //标记[1]
                 newTable[i] = e;      //将元素放在数组上
                 e = next;             //访问下一个Entry链上的元素
             } while (e != null);
         }
     }
} 

void createEntry(int hash, K key, V value, int bucketIndex) {
   // 取出table中下标为bucketIndex的Entry
    Entry e = table[bucketIndex];
   // 利用key、value来构建新的Entry
   // 并且之前存放在table[bucketIndex]处的Entry作为新Entry的next
   // 把新创建的Entry放到table[bucketIndex]位置
    table[bucketIndex] = new Entry(hash, key, value, e);
    // 当前 HashMap 的容量加 1
    size++;
}

最后的 createEntry() 方法就说明了当hash冲突时,采用的拉链法来解决hash冲突的,并且是把新元素是插入到单边表的表头。

技术图片

get() 方法
public V get(Object key) {
    // 如果 key 是空的,就调用 getForNullKey 方法特殊处理
    if (key == null)
        return getForNullKey();
    // 获取 key 相对应的 entry 
    Entry entry = getEntry(key);

    return null == entry ? null : entry.getValue();
}

//找到对应 key 的数组索引,然后遍历链表查找即可
final Entry getEntry(Object key) {
    if (size == 0) {
        return null;
    }
    // 计算 key 的哈希值
    int hash = (key == null) ? 0 : hash(key);
    // 得到数组的索引,然后遍历链表,查看是否有相同 key 的 Entry
    for (Entry e = table[indexFor(hash, table.length)];
         e != null;
         e = e.next) {
        Object k;
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
            return e;
    }
    // 没有的话,返回 null
    return null;
}

JDK1.8 实现

JDK 1.7 中,如果哈希碰撞过多,拉链过长,极端情况下,所有值都落入了同一个桶内,这就退化成了一个链表。通过 key 值查找要遍历链表,效率较低。 JDK1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。

技术图片

TreeMap、TreeSet以及 JDK1.8 之后的 HashMap 底层都用到了红黑树。红黑树就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。

源码解析

构造方法

JDK8 构造方法改动不是很大

public HashMap() {
  this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

public HashMap(int initialCapacity) {
  this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

public HashMap(int initialCapacity, float loadFactor) {
  if (initialCapacity  MAXIMUM_CAPACITY)
    initialCapacity = MAXIMUM_CAPACITY;
  if (loadFactor  m) {
  this.loadFactor = DEFAULT_LOAD_FACTOR;
  putMapEntries(m, false);
}
确定哈希桶数组索引位置(hash 函数的实现)
//方法一:
static final int hash(Object key) { //jdk1.8 & jdk1.7
 int h;
 // h = key.hashCode() 为第一步 取hashCode值
 // h ^ (h >>> 16)  为第二步 高位参与运算
 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
//方法二:
static int indexFor(int h, int length) { //jdk1.7的源码,jdk1.8没有提取这个方法,而是放在了其他方法中,比如 put 的p = tab[i = (n - 1) & hash]
 return h & (length-1); //第三步 取模运算
}

HashMap定位数组索引位置,直接决定了hash方法的离散性能。Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算

技术图片

为什么要这样呢?

HashMap 的长度为什么是2的幂次方?

目的当然是为了减少哈希碰撞,使 table 里的数据分布的更均匀。

  1. HashMap 中桶数组的大小 length 总是2的幂,此时,h & (table.length -1) 等价于对 length 取模 h%length。但取模的计算效率没有位运算高,所以这是是一个优化。假设 h = 185table.length-1 = 15(0x1111),其实散列真正生效的只是低 4bit 的有效位,所以很容易碰撞。

    技术图片

  2. 图中的 hash 是由键的 hashCode 产生。计算余数时,由于 n 比较小,hash 只有低4位参与了计算,高位的计算可以认为是无效的。这样导致了计算结果只与低位信息有关,高位数据没发挥作用。为了处理这个缺陷,我们可以上图中的 hash 高4位数据与低4位数据进行异或运算,即 hash ^ (hash >>> 4)。通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。此时的计算过程如下:

    技术图片

    在 Java 中,hashCode 方法产生的 hash 是 int 类型,32 位宽。前16位为高位,后16位为低位,所以要右移16位,即 hash ^ (hash >>> 16) 。这样还增加了hash 的复杂度,进而影响 hash 的分布性。

HashMap 的长度为什么是2的幂次方?

为了能让HashMap存取高效,尽量减少碰撞,也就是要尽量把数据分配均匀,Hash值的范围是-2147483648到2147483647,前后加起来有40亿的映射空间,只要哈希函数映射的比较均匀松散,一般应用是很难出现碰撞的,但一个问题是40亿的数组内存是放不下的。所以这个散列值是不能直接拿来用的。用之前需要先对数组长度取模运算,得到余数才能用来存放位置也就是对应的数组小标。这个数组下标的计算方法是(n-1)&hash,n代表数组长度

这个算法应该如何设计呢?

我们首先可能会想到采用%取余的操作来实现。但是,重点来了。

取余操作中如果除数是2的幂次则等价于其除数减一的与操作,也就是说hash%length=hash&(length-1),但前提是length是2的n次方,并且采用&运算比%运算效率高,这也就解释了HashMap的长度为什么是2的幂次方。

put() 方法

技术图片

public V put(K key, V value) {
  // 对key的hashCode()做hash
  return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
  Node[] tab; Node p; int n, i;
  // tab为空则创建
  if ((tab = table) == null || (n = tab.length) == 0)
    n = (tab = resize()).length;
  // 计算index,并对null做处理
  if ((p = tab[i = (n - 1) & hash]) == null)
    tab[i] = newNode(hash, key, value, null);
  else {
    Node e; K k;
    // 节点key存在,直接覆盖value
    if (p.hash == hash &&
        ((k = p.key) == key || (key != null && key.equals(k))))
      e = p;
    // 判断该链为红黑树
    else if (p instanceof TreeNode)
      e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
    else {
      //该链为链表
      for (int binCount = 0; ; ++binCount) {
        if ((e = p.next) == null) {
          p.next = newNode(hash, key, value, null);
          //链表长度大于8转换为红黑树进行处理
          if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
            treeifyBin(tab, hash);
          break;
        }
        //key已经存在直接覆盖value
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
          break;
        p = e;
      }
    }
    if (e != null) { // existing mapping for key
      V oldValue = e.value;
      if (!onlyIfAbsent || oldValue == null)
        e.value = value;
      afterNodeAccess(e);
      return oldValue;
    }
  }
  ++modCount;
  // 超过最大容量 就扩容
  if (++size > threshold)
    resize();
  afterNodeInsertion(evict);
  return null;
}
resize() 扩容
final Node[] resize() {
  Node[] oldTab = table;
  int oldCap = (oldTab == null) ? 0 : oldTab.length;
  int oldThr = threshold;
  int newCap, newThr = 0;
  if (oldCap > 0) {
    // 超过最大值就不再扩充了,就只好随你碰撞了
    if (oldCap >= MAXIMUM_CAPACITY) {
      //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
      threshold = Integer.MAX_VALUE;
      return oldTab;
    }
     // 没超过最大值,就扩充为原来的2倍
    else if ((newCap = oldCap = DEFAULT_INITIAL_CAPACITY)
      newThr = oldThr  0) // initial capacity was placed in threshold
    newCap = oldThr;
  else {               // zero initial threshold signifies using defaults
    newCap = DEFAULT_INITIAL_CAPACITY;
    newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
  }
  // 计算新的resize上限
  if (newThr == 0) {
    float ft = (float)newCap * loadFactor;
    newThr = (newCap [] newTab = (Node[])new Node[newCap];
  table = newTab;
  // 把每个bucket都移动到新的buckets中
  if (oldTab != null) {
    for (int j = 0; j  e;
      if ((e = oldTab[j]) != null) {
        oldTab[j] = null;
        if (e.next == null)
          newTab[e.hash & (newCap - 1)] = e;
        else if (e instanceof TreeNode)
          ((TreeNode)e).split(this, newTab, j, oldCap);
        else { // preserve order  链表优化重hash的代码块
          Node loHead = null, loTail = null;
          Node hiHead = null, hiTail = null;
          Node next;
          do {
            // 原索引
            next = e.next;
            if ((e.hash & oldCap) == 0) {
              if (loTail == null)
                loHead = e;
              else
                loTail.next = e;
              loTail = e;
            }
            // 原索引+oldCap
            else {
              if (hiTail == null)
                hiHead = e;
              else
                hiTail.next = e;
              hiTail = e;
            }
          } while ((e = next) != null);
          // 原索引放到bucket里
          if (loTail != null) {
            loTail.next = null;
            newTab[j] = loHead;
          }
          // 原索引+oldCap放到bucket里
          if (hiTail != null) {
            hiTail.next = null;
            newTab[j + oldCap] = hiHead;
          }
        }
      }
    }
  }
  return newTab;
}
get() 方法
public V get(Object key) {
  Node e;
  return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node getNode(int hash, Object key) {
  Node[] tab; Node first, e; int n; K k;
  //定位键值对所在桶的位置
  if ((tab = table) != null && (n = tab.length) > 0 &&
      (first = tab[(n - 1) & hash]) != null) {
    // 直接命中
    if (first.hash == hash && // always check first node
        ((k = first.key) == key || (key != null && key.equals(k))))
      return first;
    // 未命中
    if ((e = first.next) != null) {
      // 如果 first 是 TreeNode 类型,则调用黑红树查找方法
      if (first instanceof TreeNode)
        return ((TreeNode)first).getTreeNode(hash, key);
      do {
        // 在链表中查找
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
          return e;
      } while ((e = e.next) != null);
    }
  }
  return null;
}

Hashtable

Hashtable 和 HashMap 都是散列表,也是用”拉链法“实现的哈希表。保存数据和 JDK7 中的 HashMap 一样,是 Entity 对象,只是 Hashtable 中的几乎所有的 public 方法都是 synchronized 的,而有些方法也是在内部通过 synchronized 代码块来实现,效率肯定会降低。且 put() 方法不允许空值。

HashMap 和 Hashtable 的区别

  1. 线程是否安全: HashMap 是非线程安全的,HashTable 是线程安全的;HashTable 内部的方法基本都经过 synchronized 修饰。(如果你要保证线程安全的话就使用 ConcurrentHashMap 吧!);

  2. 效率: 因为线程安全的问题,HashMap 要比 HashTable 效率高一点。另外,HashTable 基本被淘汰,不要在代码中使用它;

  3. 对Null key 和Null value的支持: HashMap 中,null 可以作为键,这样的键只有一个,可以有一个或多个键所对应的值为 null。。但是在 HashTable 中 put 进的键值只要有一个 null,直接抛出 NullPointerException。

  4. 初始容量大小和每次扩充容量大小的不同 :

    ① 创建时如果不指定容量初始值,Hashtable 默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap 默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。

    ② 创建时如果给定了容量初始值,那么 Hashtable 会直接使用你给定的大小,而 HashMap 会将其扩充为2的幂次方大小。也就是说 HashMap 总是使用2的幂次方作为哈希表的大小,后面会介绍到为什么是2的幂次方。

  5. 底层数据结构: JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。Hashtable 没有这样的机制。

  6. HashMap的迭代器(Iterator)是fail-fast迭代器,但是 Hashtable的迭代器(enumerator)不是 fail-fast的。如果有其它线程对HashMap进行的添加/删除元素,将会抛出ConcurrentModificationException,但迭代器本身的remove方法移除元素则不会抛出异常。这条同样也是 Enumeration 和 Iterator 的区别。

ConcurrentHashMap

HashMap在多线程情况下,在put的时候,插入的元素超过了容量(由负载因子决定)的范围就会触发扩容操作,就是rehash,这个会重新将原数组的内容重新hash到新的扩容数组中,在多线程的环境下,存在同时其他的元素也在进行put操作,如果hash值相同,可能出现同时在同一数组下用链表表示,造成闭环,导致在get时会出现死循环,所以HashMap是线程不安全的。

Hashtable,是线程安全的,它在所有涉及到多线程操作的都加上了synchronized关键字来锁住整个table,这就意味着所有的线程都在竞争一把锁,在多线程的环境下,它是安全的,但是无疑是效率低下的。

JDK1.7 实现

Hashtable 容器在竞争激烈的并发环境下表现出效率低下的原因,是因为所有访问 Hashtable 的线程都必须竞争同一把锁,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,,这就是ConcurrentHashMap所使用的锁分段技术。

在 JDK1.7版本中,ConcurrentHashMap 的数据结构是由一个 Segment 数组和多个 HashEntry 组成。Segment 数组的意义就是将一个大的 table 分割成多个小的 table 来进行加锁。每一个 Segment 元素存储的是 HashEntry数组+链表,这个和 HashMap 的数据存储结构一样。

技术图片

ConcurrentHashMap 类中包含两个静态内部类 HashEntry 和 Segment。
HashEntry 用来封装映射表的键值对,Segment 用来充当锁的角色,每个 Segment 对象守护整个散列映射表的若干个桶。每个桶是由若干个 HashEntry 对象链接起来的链表。一个 ConcurrentHashMap 实例中包含由若干个 Segment 对象组成的数组。每个 Segment 守护着一个 HashEntry 数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得它对应的 Segment 锁。

Segment 类

Segment 类继承于 ReentrantLock 类,从而使得 Segment 对象能充当可重入锁的角色。一个 Segment 就是一个子哈希表,Segment 里维护了一个 HashEntry 数组,并发环境下,对于不同 Segment 的数据进行操作是不用考虑锁竞争的。

从源码可以看到,Segment 内部类和我们上边看到的 HashMap 很相似。也有负载因子,阈值等各种属性。

static final class Segment extends ReentrantLock implements Serializable {
  
  static final int MAX_SCAN_RETRIES =
    Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
  transient volatile HashEntry[] table;
  transient int count;
  transient int modCount;  //记录修改次数
  transient int threshold;
  final float loadFactor;

  Segment(float lf, int threshold, HashEntry[] tab) {
    this.loadFactor = lf;
    this.threshold = threshold;
    this.table = tab;
  }

  //put 方法会有加锁操作,
  final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    HashEntry node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
    // ...
  }

  @SuppressWarnings("unchecked")
  private void rehash(HashEntry node) {
    // ...
  }

  private HashEntry scanAndLockForPut(K key, int hash, V value) {
 		//...
  }

  private void scanAndLock(Object key, int hash) {
 		//...
  }

  final V remove(Object key, int hash, Object value) {
    //...
  }

  final boolean replace(K key, int hash, V oldValue, V newValue) {
  	//...
  }

  final V replace(K key, int hash, V value) {
    //...
  }

  final void clear() {
		//...
  }
}

HashEntry 类

HashEntry 是目前我们最小的逻辑处理单元。一个ConcurrentHashMap 维护一个 Segment 数组,一个Segment维护一个 HashEntry 数组。

static final class HashEntry {
  final int hash;
  final K key;
  volatile V value;   // value 为 volatie 类型,保证可见
  volatile HashEntry next;
	//...
}

ConcurrentHashMap 类

默认的情况下,每个ConcurrentHashMap 类会创建16个并发的 segment,每个 segment 里面包含多个 Hash表,每个 Hash 链都是由 HashEntry 节点组成的。

public class ConcurrentHashMap extends AbstractMap
        implements ConcurrentMap, Serializable {
	//默认初始容量为 16,即初始默认为 16 个桶
  static final int DEFAULT_INITIAL_CAPACITY = 16;
  static final float DEFAULT_LOAD_FACTOR = 0.75f;
  //默认并发级别为 16。该值表示当前更新线程的估计数
  static final int DEFAULT_CONCURRENCY_LEVEL = 16;
  
  static final int MAXIMUM_CAPACITY = 1 [] segments;   //主干就是这个分段锁数组
  
  //构造器
  public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity  MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // 2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5
        int sshift = 0;
        // ssize 为segments数组长度,根据concurrentLevel计算得出
        int ssize = 1;
        while (ssize  MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize  s0 =
            new Segment(loadFactor, (int)(cap * loadFactor),
                             (HashEntry[])new HashEntry[cap]);
        Segment[] ss = (Segment[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }
}

put() 方法

  1. **定位segment并确保定位的Segment已初始化 **
  2. 调用 Segment的 put 方法。
public V put(K key, V value) {
  Segment s;
  //concurrentHashMap不允许key/value为空
  if (value == null)
    throw new NullPointerException();
  //hash函数对key的hashCode重新散列,避免差劲的不合理的hashcode,保证散列均匀
  int hash = hash(key);
  //返回的hash值无符号右移segmentShift位与段掩码进行位运算,定位segment
  int j = (hash >>> segmentShift) & segmentMask;
  if ((s = (Segment)UNSAFE.getObject          // nonvolatile; recheck
       (segments, (j 

get() 方法

get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据

public V get(Object key) {
  Segment s; // manually integrate access methods to reduce overhead
  HashEntry[] tab;
  int h = hash(key);
  long u = (((h >>> segmentShift) & segmentMask) )UNSAFE.getObjectVolatile(segments, u)) != null &&
      (tab = s.table) != null) {
    for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
         (tab, ((long)(((tab.length - 1) & h)) 

JDK1.8 实现

技术图片

ConcurrentHashMap 在 JDK8 中进行了巨大改动,光是代码量就从1000多行增加到6000行!1.8摒弃了Segment(锁段)的概念,采用了 CAS + synchronized 来保证并发的安全性。

可以看到,和HashMap 1.8的数据结构很像。底层数据结构改变为采用数组+链表+红黑树的数据形式。

和HashMap1.8相同的一些地方

  • 底层数据结构一致
  • HashMap初始化是在第一次put元素的时候进行的,而不是init
  • HashMap的底层数组长度总是为2的整次幂
  • 默认树化的阈值为 8,而链表化的阈值为 6
  • hash算法也很类似,但多了一步& HASH_BITS,该步是为了消除最高位上的负符号,hash的负在ConcurrentHashMap中有特殊意义表示在扩容或者是树节点
static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash

static final int spread(int h) {
    return (h ^ (h >>> 16)) & HASH_BITS;
}

一些关键属性

private static final int MAXIMUM_CAPACITY = 1 >> 1)代替了更高效

static final int TREEIFY_THRESHOLD = 8; // 链表转树阀值,大于8时

static final int UNTREEIFY_THRESHOLD = 6; //树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,[] table; //装载Node的数组,作为ConcurrentHashMap的数据容器,采用懒加载的方式,直到第一次插入数据的时候才会进行初始化操作,数组的大小总是为2的幂次方。

private transient volatile Node[] nextTable; //扩容时使用,平时为null,只有在扩容的时候才为非null

/**
* 实际上保存的是hashmap中的元素个数  利用CAS锁进行更新但它并不用返回当前hashmap的元素个数 
*/
private transient volatile long baseCount;

/**
*该属性用来控制table数组的大小,根据是否初始化和是否正在扩容有几种情况:
*当值为负数时:如果为-1表示正在初始化,如果为-N则表示当前正有N-1个线程进行扩容操作;
*当值为正数时:如果当前数组为null的话表示table在初始化过程中,sizeCtl表示为需要新建数组的长度;若已经初始化了,表示当前数据容器(table数组)可用容量也可以理解成临界值(插入节点数超过了该临界值就需要扩容),具体指为数组的长度n 乘以 加载因子loadFactor;当值为0时,即数组长度为默认初始值。
*/
private transient volatile int sizeCtl;

put() 方法

  1. 首先会判断 key、value是否为空,如果为空就抛异常!
  2. spread()方法获取hash,减小hash冲突
  3. 判断是否初始化table数组,没有的话调用initTable()方法进行初始化
  4. 判断是否能直接将新值插入到table数组中
  5. 判断当前是否在扩容,MOVED为-1说明当前ConcurrentHashMap正在进行扩容操作,正在扩容的话就进行协助扩容
  6. 当table[i]为链表的头结点,在链表中插入新值,通过synchronized (f)的方式进行加锁以实现线程安全性。
    1. 在链表中如果找到了与待插入的键值对的key相同的节点,就直接覆盖
    2. 如果没有找到的话,就直接将待插入的键值对追加到链表的末尾
  7. 当table[i]为红黑树的根节点,在红黑树中插入新值/覆盖旧值
  8. 根据当前节点个数进行调整,否需要转换成红黑树(个数大于等于8,就会调用treeifyBin方法将tabel[i]第i个散列桶拉链转换成红黑树)
  9. 对当前容量大小进行检查,如果超过了临界值(实际大小*加载因子)就进行扩容
final V putVal(K key, V value, boolean onlyIfAbsent) {
    // key 和 value 均不允许为 null
    if (key == null || value == null) throw new NullPointerException();
    // 根据 key 计算出 hash 值
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node[] tab = table;;) {
        Node f; int n, i, fh;
         // 判断是否需要进行初始化
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        // f 即为当前 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        // 如果当前位置的 hashcode == MOVED == -1,则需要进行扩容
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        // 如果都不满足,则利用 synchronized 锁写入数据
        else {
          // 剩下情况又分两种,插入链表、插入红黑树
            V oldVal = null;
          //采用同步内置锁实现并发控制
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    // 如果 fh=f.hash >=0,当前为链表,在链表中插入新的键值对
                    if (fh >= 0) {
                        binCount = 1;
                      //遍历链表,如果找到对应的 node 节点,修改 value,否则直接在链表尾部加入节点
                        for (Node e = f;; ++binCount) {
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    // 当前为红黑树,将新的键值对插入到红黑树中
                    else if (f instanceof TreeBin) {
                        Node p;
                        binCount = 2;
                        if ((p = ((TreeBin)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            // 插入完键值对后再根据实际大小看是否需要转换成红黑树
            if (binCount != 0) {
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    // 对当前容量大小进行检查,如果超过了临界值(实际大小*加载因子)就需要扩容 
    addCount(1L, binCount);
    return null;
}

我们可以发现JDK8中的实现也是锁分离的思想,只是锁住的是一个Node,而不是JDK7中的Segment,而锁住Node之前的操作是无锁的并且也是线程安全的,建立在之前提到的原子操作上。

get() 方法

get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据

public V get(Object key) {
  Node[] tab; Node e, p; int n, eh; K ek;
  int h = spread(key.hashCode());
  // 判断数组是否为空
  if ((tab = table) != null && (n = tab.length) > 0 &&
      (e = tabAt(tab, (n - 1) & h)) != null) {
    // 判断node 节点第一个元素是不是要找的,如果是直接返回
    if ((eh = e.hash) == h) {
      if ((ek = e.key) == key || (ek != null && key.equals(ek)))
        return e.val;
    }
    // // hash小于0,说明是特殊节点(TreeBin或ForwardingNode)调用find
    else if (eh 

Hashtable 和 ConcurrentHashMap 的区别

ConcurrentHashMap 和 Hashtable 的区别主要体现在实现线程安全的方式上不同。

  • 底层数据结构: JDK1.7的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构和HashMap1.8的结构类似,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的;
  • 实现线程安全的方式(重要):
    • 在JDK1.7的时候,ConcurrentHashMap(分段锁) 对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。(默认分配16个Segment,比Hashtable效率提高16倍。) 到了 JDK1.8 的时候已经摒弃了Segment的概念,而是直接用 Node 数组+链表/红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6以后 对 synchronized锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在 JDK1.8 中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本;
    • Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争越激烈效率越低。

Java快速失败(fail-fast)和安全失败(fail-safe)区别


评论


亲,登录后才可以留言!