Kubernetes ---- Pod控制器之StatefulSet
2021-02-01 08:19
标签:镜像 city read 运行 ice partition ada 标识符 att cattle: 关注群体 特性: StatefulSet中的headless Service的作用: StatefulSet控制的服务集群中,启动服务,顺序启动,停止服务,逆序启动;当集群中有Pod要重新启动时,Pod的名称必须要与第一次启动时的Pod的名称一致,Pod名称是作为识别Pod唯一性的标识符(必须稳定、持久、有效) 在分布式系统当中,数据分别存储的数据是不一致的,每个节点应该有自己专用的存储卷,创建每一个Pod时会自动生成一个pvc,从而请求绑定一个pv,然后拥有自己单独的存储卷; ## 下面的三个Pods的名称有规律性的,不像deployment控制器创建出来的随机名称,因为当我们删除其中一个Pod之后,K8s还会创建出来之前那个一样名称的Pod; ## 下面的myapp就是我们创建的statefulSet类型的控制器 ## 我们发现,当创建Pod的时候,Pod会自动拥有一个pvc,然后这个pvc再去系统上找寻与之规则匹配的pv进行绑定,从而使每个Pod都能单独挂载在某个pvc上,且pvc的名字都隐含了Pod的名字,所以就使得他们能够 注: 自定义更新策略: 演示: 正式升级: Kubernetes ---- Pod控制器之StatefulSet 标签:镜像 city read 运行 ice partition ada 标识符 att 原文地址:https://www.cnblogs.com/k-free-bolg/p/13181957.htmlStatefulSet
pet: 关注个体
1. 稳定且需要有唯一的网络标识符;
2. 稳定且持久的存储设备;
3. 有序、平滑的部署和扩展;
4. 有序、平滑的终止和删除;
5. 有序的滚动更新;
StatefulSet必备的三个组件:
1. headless Service
2. StatefulSet
3. volumeClaimTemplate
使用headless Service确保解析的名称是直达后端Pod IP地址的,并确保给每个Pod配置一个唯一的名称; StatefulSet中的volumeClaimTemplate:
创建StatefulSet:
1. 创建pv,pv与pvc内容见博客另一篇文章;
$ vim pv-demo.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv001
labels:
name: pv0001
spec:
accessModes: ["ReadWriteOnce","ReadWriteMany"]
capacity:
storage: 5Gi
nfs:
path: /data/volumes/v1
server: 192.168.222.103
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv002
labels:
name: pv0002
spec:
accessModes: ["ReadWriteOnce"]
capacity:
storage: 5Gi
nfs:
path: /data/volumes/v2
server: 192.168.222.103
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv003
labels:
name: pv0003
spec:
accessModes: ["ReadWriteOnce","ReadWriteMany"]
capacity:
storage: 5Gi
nfs:
path: /data/volumes/v3
server: 192.168.222.103
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv004
labels:
name: pv0004
spec:
accessModes: ["ReadWriteOnce","ReadWriteMany"]
capacity:
storage: 10Gi
nfs:
path: /data/volumes/v4
server: 192.168.222.103
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv005
labels:
name: pv0005
spec:
accessModes: ["ReadWriteOnce","ReadWriteMany"]
capacity:
storage: 10Gi
nfs:
path: /data/volumes/v5
server: 192.168.222.103
$ kubectl apply -f pv-demo.yaml
$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pv001 5Gi RWO,RWX Retain Available 78m
pv002 5Gi RWO Retain Available 78m
pv003 5Gi RWO,RWX Retain Available 78m
pv004 10Gi RWO,RWX Retain Available 78m
pv005 10Gi RWO,RWX Retain Available 78m2. 创建statefulSet应用
$ vim state-demo.yaml
apiVersion: v1
kind: Service
metadata:
name: myapp
namespace: default
labels:
app: myapp
spec:
clusterIP: None
ports:
- name: web
port: 80
selector:
app: myapp
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: myapp
namespace: myapp
spec:
serviceName: myapp
replicas: 3
selector:
matchLabels:
app: myapp-pod
template:
metadata:
labels:
app: myapp-pod
spec:
containers:
- name: myapp
image: ikubernetes/myapp:v5
imagePullPolicy: IfNotPresent
ports:
- name: web
containerPort: 80
volumeMounts:
- name: myappdata
mountPath: /usr/share/nginx/html
volumeClaimTemplates:
- metadata:
name: myappdata
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 5Gi
$ kubectl apply -f state-demo.yaml
3. 成果
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
myapp-0 1/1 Running 0 44m
myapp-1 1/1 Running 0 44m
myapp-2 1/1 Running 0 44m
$ kubectl get sts
NAME READY AGE
myapp 3/3 45m
持续的为同一个Pod而使用,这就是VolumeClaimTemplates的功能;$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myappdata-myapp-0 Bound pv002 5Gi RWO 51m
myappdata-myapp-1 Bound pv003 5Gi RWO,RWX 49m
myappdata-myapp-2 Bound pv004 10Gi RWO,RWX 49m
当我们手动删除Pod时,pvc并不会被删除,且Pod的删除顺序是倒序删除的,从2 --> 0逐一删除;
创建时则是正序创建,从0 --> 2;
每一个Pod的名称都可以被解析为IP地址;
pod_name.service_name.ns_name.svc.cluster.local
myapp-0.myapp.default.svc.cluster.local
myapp-1.myapp.default.svc.cluster.local
myapp-2.myapp.default.svc.cluster.local扩展副本:
# 将副本扩展至5个,k8s会先扩展4,再扩展5.
$ kubectl patch -f state-demo.yaml -p ‘{"spec":{"replicas":5}}‘
# 查看一下pvc,发现所有pvc都已经被绑定了;
$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myappdata-myapp-0 Bound pv002 5Gi RWO 69m
myappdata-myapp-1 Bound pv003 5Gi RWO,RWX 67m
myappdata-myapp-2 Bound pv004 10Gi RWO,RWX 67m
myappdata-myapp-3 Bound pv005 10Gi RWO,RWX 2m50s
myappdata-myapp-4 Bound pv001 5Gi RWO,RWX 2m36s
缩减副本:
# 将副本再次缩减至3个,监控Pod变化顺序,会先删除4,再删除3,直至副本数量满足要求;
$ kubectl get pods -o wide -w
$ kubectl patch -f state-demo.yaml -p ‘{"spec":{"replicas":3}}‘
myapp-4 1/1 Terminating 0 5m21s 10.244.1.127 node3
滚动升级:
金丝雀升级:
sts.spec.updateStrategy.rollingUpdate
partition: N
意味着>=N的Pod会被更新
partition: 2
myapp-0 不会更新
myapp-1 不会更新
myapp-2 会更新# 将partition设为4,那么Pod中大于等于4的Pod才会更新;
$ kubectl patch sts/myapp -p ‘{"spec":{"updateStrategy":{"rollingUpdate":{"partition":4}}}}‘
# 更换镜像
$ kubectl set image sts/myapp myapp=ikubernetes/myapp:v2
# 验证,发现只有myapp-4的镜像变化了;
$ kubectl describe pod myapp-4
....
10.244.1.129
....
$ kubectl describe pod myapp-0
....
Image: ikubernetes/myapp:v5
....
当发现金丝雀升级后的其中一个Pod运行没有任何异常的状况,可以将所有Pod都升级,监控升级过程,发现是从大到小进行升级的;$ kubectl get pods -o wide -w
$ kubectl patch sts/myapp -p ‘{"spec":{"updateStrategy":{"rollingUpdate":{"partition":0}}}}‘
# 所有的Pod的镜像都已经改变了
$ kubectl describe pod myapp-0
....
Image: ikubernetes/myapp:v2
....
下一篇:C#中的类型转换
文章标题:Kubernetes ---- Pod控制器之StatefulSet
文章链接:http://soscw.com/essay/49413.html