[POJ3417]Network/闇の連鎖

2021-02-06 17:16

阅读:590

标签:nbsp   题目   状态   struct   rda   差分   tchar   return   能力   

题目

Description

传说中的暗之连锁被人们称为 Dark。 Dark 是人类内心的黑暗的产物,古今中外的勇者们都试图打倒它。经过研究,你发现 Dark 呈现无向图的结构,图中有 N 个节点和两类边,一类边被称为主要边,而另一类被称为附加边。 Dark 有 N – 1条主要边,并且 Dark 的任意两个节点之间都存在一条只由主要边构成的路径。另外,Dark 还有 M 条附加边。你的任务是把 Dark 斩为不连通的两部分。一开始 Dark的附加边都处于无敌状态,你只能选择一条主要边切断。一旦你切断了一条主要边,Dark 就会进入防御模式,主要边会变为无敌的而附加边可以被切断。但是你的能力只能再切断 Dark 的一条附加边。现在你想要知道,一共有多少种方案可以击败 Dark。注意,就算你第一步切断主要边之后就已经把 Dark 斩为两截,你也需要切断一条附加边才算击败了 Dark

Input

第一行包含两个整数 N 和 M。
之后 N – 1 行,每行包括两个整数 A 和 B,表示 A 和 B 之间有一条主要边。
之后 M 行以同样的格式给出附加边。
N≤100 000,M≤200 000。数据保证答案不超过 2^31 – 1

 

Output

输出一个整数表示答案

 

Sample Input

4 1
1 2
2 3
1 4
3 4

 

Sample Output

3

 


 

思路:

这是一道树上差分

锯题可知,首先将主要边构成一棵树,如果再将附加边(x,y)加入则会构成一个环,所以不能这样;

如果第一次选择切断主要边,那么第二步就要切断附加边;

所以,我们可以将附加边(x,y)两点的路径覆盖主要边的次数统计出来;

1。如果,主要边被覆盖了零次,那么说明,任何一条附加边与这条边切断都可以分成两部分;

2。如果,主要边被覆盖了一次,那么说明,只有一条附加边与这条边切断都可以分成两部分;

3。如果,主要边被覆盖了两次,那么说明,这条边切断后不能分成两部分;

具体如图:

(黑色代表主要边,红色代表附加边)

技术图片技术图片

 

然后,我们可以求出,两个附件边的点,的最近公共祖先;

将最近公共祖先点上的权值减2,将两个点的权值加1;如图二所示;

 为什么是这样加减呢;

我们知道 一个数组 x-y的权值加 d,就相当于 它的差分数组的 a[x]+d , a[y+1]-d (不知道的,自己上网搜)

那么,这是每一次覆盖次数加一,然后每个点都和公共祖先有一条边,所以最近公共祖先点上的权值减2,将两个点的权值加1;

树上差分还是有点区别的,这样理解就好了;

然后定义f[x],代表以x为根节点,的所有子节点,包括自己的权值和;

那么f[x]就表示,x与它父节点之间的边的覆盖次数;

最后,如果f[x]==0,ans+=m(m代表附加边的数量)

          如果f[x]==1,,ans++

要注意的是,f[x] 如果x是1(根节点),答案ans不需要改变

 

代码

#includeusing namespace std;
typedef long long ll;
inline ll read()
{
    ll a=0,f=1; char c=getchar();
    while (c‘0||c>9) {if (c==-) f=-1; c=getchar();}
    while (c>=0&&c‘9) {a=a*10+c-0; c=getchar();}
    return a*f;
}
ll n,m,ans;
ll head[500001],f[500001];
ll dep[500001],dp[500001][21];
struct sbbbbbb
{
    ll to,stb;
}a[500001];
ll s=0;
inline void insert(ll x,ll y)
{
    s++;
    a[s].to=y;
    a[s].stb=head[x];
    head[x]=s;
}
inline void dfs(ll x,ll fa)
{
    dep[x]=dep[fa]+1;
    for(ll i=head[x];i;i=a[i].stb)
    {
        ll xx=a[i].to;
        if(xx==fa)
            continue;
        dp[xx][0]=x;
        dfs(xx,x);
    }
}
inline ll lca(ll x,ll y)
{
    if(dep[x]dep[y])
        swap(x,y);
    for(ll i=20;i>=0;i--)
    if(dep[dp[x][i]]>=dep[y])
        x=dp[x][i];
    if(x==y)
        return x;
    for(ll i=20;i>=0;i--)
    if(dp[x][i]!=dp[y][i])
        x=dp[x][i],y=dp[y][i];
    return dp[x][0];
}
inline void findout(ll x,ll fa)
{
    for(ll i=head[x];i;i=a[i].stb)
    {
        ll xx=a[i].to;
        if(xx==fa)
            continue;
        findout(xx,x);
        f[x]+=f[xx];
    }
    if(x!=1)
    {
        if(f[x]==0)//如果f[x]==0,ans+=m ...思路中讲得很清楚了 
            ans+=m;
        if(f[x]==1)//如果f[x]==1,ans++ ...思路中讲得很清楚了 
            ans++;
    }
}
int main()
{
    n=read();m=read();
    for(ll i=1;i1;i++)
    {
        ll x=read(),y=read();
        insert(x,y);
        insert(y,x);//将主要边,构成一棵树 
    }
    dfs(1,0);
    for(ll j=1;j20;j++)
    for(ll i=1;i)
        dp[i][j]=dp[dp[i][j-1]][j-1];//求lca的操作 
    for(ll i=1;i)
    {
        ll x=read(),y=read();
        ll sum=lca(x,y);
        f[sum]-=2;
        f[x]++;f[y]++;//差分统计...思路中讲得很清楚了 
    }
    findout(1,0);
    printf("%lld",ans);
}

 

[POJ3417]Network/闇の連鎖

标签:nbsp   题目   状态   struct   rda   差分   tchar   return   能力   

原文地址:https://www.cnblogs.com/wzx-RS-STHN/p/13110564.html


评论


亲,登录后才可以留言!