BindsNET Breakout源码分析
2021-03-03 02:29
标签:code imu bin 计算 function col shape tpi std BindsNET:https://github.com/BindsNET/bindsnet 相关代码:bindsnet/examples/breakout/ 1. breakout.py bindsnet.network.Network对象是BindsNET的主要工作。它负责协调其所有组成部分的仿真:神经元,突触,学习规则等。其中dt参数指定仿真时间步长,该步长决定要解决仿真的时间粒度(以毫秒为单位)。为了简化计算,所有仿真均使用Euler方法进行。如果在仿真中遇到不稳定性,请使用较小的dt来解决数值不稳定性。 2. breakout_stdp.py 3. play_breakout_from_ANN.py 4. random_baseline.py 5. random_network_baseline.py 6. trained_shallow_ANN.pt BindsNET Breakout源码分析 标签:code imu bin 计算 function col shape tpi std 原文地址:https://www.cnblogs.com/lucifer1997/p/14293310.htmlfrom bindsnet.network import Network
from bindsnet.pipeline import EnvironmentPipeline
from bindsnet.encoding import bernoulli
from bindsnet.network.topology import Connection
from bindsnet.environment import GymEnvironment
from bindsnet.network.nodes import Input, IzhikevichNodes
from bindsnet.pipeline.action import select_softmax
# Build network.
network = Network(dt=1.0)
# Layers of neurons.
inpt = Input(n=80 * 80, shape=[1, 1, 1, 80, 80], traces=True)
middle = IzhikevichNodes(n=100, traces=True)
out = IzhikevichNodes(n=4, refrac=0, traces=True)
# Connections between layers.
inpt_middle = Connection(source=inpt, target=middle, wmin=0, wmax=1)
middle_out = Connection(source=middle, target=out, wmin=0, wmax=1)
# Add all layers and connections to the network.
network.add_layer(inpt, name="Input Layer")
network.add_layer(middle, name="Hidden Layer")
network.add_layer(out, name="Output Layer")
network.add_connection(inpt_middle, source="Input Layer", target="Hidden Layer")
network.add_connection(middle_out, source="Hidden Layer", target="Output Layer")
# Load the Breakout environment.
environment = GymEnvironment("BreakoutDeterministic-v4")
environment.reset()
# Build pipeline from specified components.
pipeline = EnvironmentPipeline(
network,
environment,
encoding=bernoulli,
action_function=select_softmax,
output="Output Layer",
time=100,
history_length=1,
delta=1,
plot_interval=1,
render_interval=1,
)
# Run environment simulation for 100 episodes.
for i in range(100):
total_reward = 0
pipeline.reset_state_variables()
is_done = False
while not is_done:
result = pipeline.env_step()
pipeline.step(result)
reward = result[1]
total_reward += reward
is_done = result[2]
print(f"Episode {i} total reward:{total_reward}")
# Build network.
network = Network(dt=1.0) # param dt: Simulation timestep.
# Layers of neurons.
inpt = Input(n=80 * 80, shape=[1, 1, 1, 80, 80], traces=True)
middle = IzhikevichNodes(n=100, traces=True)
out = IzhikevichNodes(n=4, refrac=0, traces=True)