Python for Data Science - A neural network with a Perceptron
2021-03-05 11:28
标签:prope te pro abi you cal set purpose process perl Perceptron A perceptron is a neural network with just one layer, It‘s a linear classifier that outputs a binary response variable. Consequently, the algorithm is called a "linear binary classifier." Linear Separability Activation Function An activation function is a mathematical function that is deployed on each unit in a neural network. All units in a shared layer deploy the same activation function. The purpose of activation functions is to enable neural networks to model complex, nonlinear phenomenon. Python for Data Science - A neural network with a Perceptron 标签:prope te pro abi you cal set purpose process perl 原文地址:https://www.cnblogs.com/keepmoving1113/p/14327357.htmlChapter 6 - Other Popular Machine Learning Methods
Segment 2 - A neural network with a Perceptron
import numpy as np
import pandas as pd
import sklearn
from pandas import Series, DataFrame
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.linear_model import Perceptron
iris = datasets.load_iris()
X = iris.data
y = iris.target
X[0:10,]
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1]])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
standardize = StandardScaler()
standardized_X_test = standardize.fit_transform(X_test)
standardized_X_train = standardize.fit_transform(X_train)
standardized_X_test[0:10,]
array([[ 0.60104076, -0.54300257, 1.03062704, 1.00726119],
[-0.14142136, 2.04272396, -1.19635601, -1.17060084],
[ 0.8131728 , -0.54300257, 0.87525613, 1.68784307],
[ 0.49497475, -0.28442992, 1.03062704, 1.00726119],
[-0.88388348, 0.7498607 , -1.09277541, -1.03448446],
[-1.20208153, -0.54300257, -1.09277541, -1.30671722],
[-0.56568542, 1.78415131, -0.9374045 , -0.89836809],
[-0.45961941, 0.7498607 , -1.14456571, -1.17060084],
[-0.88388348, -1.83586584, -0.26413055, 0.05444655],
[-0.98994949, 0.49128804, -1.0409851 , -1.17060084]])
perceptron = Perceptron(max_iter=50, eta0=0.15, tol=1e-3, random_state=15)
perceptron.fit(standardized_X_train, y_train.ravel())
Perceptron(eta0=0.15, max_iter=50, random_state=15)
y_pred = perceptron.predict(standardized_X_test)
print(y_test)
[2 0 2 2 0 0 0 0 1 0 0 0 1 2 0 2 2 0 1 2 2 1 1 1 2 1 2 0 0 0]
print(y_pred)
[2 0 2 2 0 0 0 0 1 0 0 0 1 1 0 2 2 0 1 1 2 1 1 1 2 1 2 0 0 0]
print(classification_report(y_test,y_pred))
precision recall f1-score support
0 1.00 1.00 1.00 13
1 0.78 1.00 0.88 7
2 1.00 0.80 0.89 10
accuracy 0.93 30
macro avg 0.93 0.93 0.92 30
weighted avg 0.95 0.93 0.93 30
下一篇:WPF在子线程中更新控件
文章标题:Python for Data Science - A neural network with a Perceptron
文章链接:http://soscw.com/essay/60422.html