贪心算法:无重叠区间

2021-03-08 14:28

阅读:833

标签:更新   ems   理解   复杂度   ppi   最大   inter   seo   分割线   

?
通知:一些录友基础比较薄弱,不知道从哪里开始刷题。可以看一下公众号左下角的「算法汇总」,「算法汇总」已经把题目顺序编排好了,文章顺序即刷题顺序,这是全网最详细的刷题顺序了,方便录友们从头打卡学习,「算法汇总」会持续更新!

**?

  1. 无重叠区间**
    题目链接:https://leetcode-cn.com/problems/non-overlapping-intervals/

给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。

注意:
可以认为区间的终点总是大于它的起点。
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。

示例 1:
输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1 解释: 移除 [1,3] 后,剩下的区间没有重叠。

示例 2:
输入: [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。

示例 3:
输入: [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。

思路
「相信很多同学看到这道题目都冥冥之中感觉要排序,但是究竟是按照右边界排序,还是按照左边界排序呢?

这其实是一个难点!

按照右边界排序,就要从左向右遍历,因为右边界越小越好,只要右边界越小,留给下一个区间的空间就越大,所以从左向右遍历,优先选右边界小的。

按照左边界排序,就要从右向左遍历,因为左边界数值越大越好(越靠右),这样就给前一个区间的空间就越大,所以可以从右向左遍历。

如果按照左边界排序,还从左向右遍历的话,要处理各个区间右边界的各种情况。

一些同学做这道题目可能真的去模拟去重复区间的行为,这是比较麻烦的,还要去删除区间。

题目只是要求移除区间的个数,没有必要去真实的模拟删除区间!

「我来按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了」

此时问题就是要求非交叉区间的最大个数。

右边界排序之后,局部最优:优先选右边界小的区间,所以从左向右遍历,留给下一个区间的空间大一些,从而尽量避免交叉。全局最优:选取最多的非交叉区间。

局部最优推出全局最优,试试贪心!

这里记录非交叉区间的个数还是有技巧的,如图:
技术图片
435.无重叠区间
区间,1,2,3,4,5,6都按照右边界排好序。

每次取非交叉区间的时候,都是可右边界最小的来做分割点(这样留给下一个区间的空间就越大),所以第一条分割线就是区间1结束的位置。

接下来就是找大于区间1结束位置的区间,是从区间4开始。「那有同学问了为什么不从区间5开始?别忘已经是按照右边界排序的了」。

区间4结束之后,在找到区间6,所以一共记录非交叉区间的个数是三个。

总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。

C++代码如下:


class Solution {
public:
    // 按照区间右边界排序
    static bool cmp (const vector& a, const vector& b) {
        return a[1] >& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 1; // 记录非交叉区间的个数
        int end = intervals[0][1]; // 记录区间分割点
        for (int i = 1; i 
  • 时间复杂度:O(nlogn) ,有一个快排
  • 空间复杂度:O(1)
    大家此时会发现如此复杂的一个问题,代码实现却这么简单!

总结
本题我认为难度级别可以算是hard级别的!

总结如下难点:

  • 难点一:一看题就有感觉需要排序,但究竟怎么排序,按左边界排还是右边界排。
  • 难点二:排完序之后如何遍历,如果没有分析好遍历顺序,那么排序就没有意义了。
  • 难点三:直接求重复的区间是复杂的,转而求最大非重复区间个数。
  • 难点四:求最大非重复区间个数时,需要一个分割点来做标记。
    「这四个难点都不好想,但任何一个没想到位,这道题就解不了」

一些录友可能看网上的题解代码很简单,照葫芦画瓢稀里糊涂的就过了,但是其题解可能并没有把问题难点讲清楚,然后自己再没有钻研的话,那么一道贪心经典区间问题就这么浪费掉了。

贪心就是这样,代码有时候很简单(不是指代码短,而是逻辑简单),但想法是真的难!

这和动态规划还不一样,动规的代码有个递推公式,可能就看不懂了,而贪心往往是直白的代码,但想法读不懂,哈哈。

「所以Carl把本题的难点也一一列出,帮大家不仅代码看的懂,想法也理解的透彻!」

循序渐进学算法,认准「代码随想录」就够了,值得介绍给身边的朋友同学们!

贪心算法:无重叠区间

标签:更新   ems   理解   复杂度   ppi   最大   inter   seo   分割线   

原文地址:https://blog.51cto.com/15069438/2576183


评论


亲,登录后才可以留言!