【译】Using .NET for Apache Spark to Analyze Log Data
2021-03-09 03:29
标签:awd mst developer gcj ado iuc select py3 开始 我们如何对DataFrame的每一行执行计算,比如将每个日志条目与上面的s_apacheRx进行匹配?答案是Spark SQL。 每次执行这一条查询的时候返回的结果都可能会不一样,这取决于std_name的值。1 什么是日志分析?
2 编写一个应用
2.1 创建Spark会话
SparkSession spark = SparkSession
.Builder()
.AppName("Apache User Log Processing")
.GetOrCreate();
2.2 读取输入数据
DataFrame generalDf = spark.Read().Text("
2.3 操纵和分析输入的数据
string s_apacheRx = "^(\S+) (\S+) (\S+) [([\w:/]+\s[+-]\d{4})] \"(\S+) (\S+) (\S+)\" (\d{3}) (\d+)";
2.4 Spark SQL
spark.Udf().Registerstring, bool>("GeneralReg", log => Regex.IsMatch(log, s_apacheRx));
DataFrame generalDf = spark.Sql("SELECT logs.value, GeneralReg(logs.value) FROM Logs");
generalDf = generalDf.Filter(generalDf["GeneralReg(value)"]);
generalDf.Show();
// Choose valid log entries that start with 10
spark.Udf().Registerstring, bool>(
"IPReg",
log => Regex.IsMatch(log, "^(?=10)"));
generalDf.CreateOrReplaceTempView("IPLogs");
// Apply UDF to get valid log entries starting with 10
DataFrame ipDf = spark.Sql(
"SELECT iplogs.value FROM IPLogs WHERE IPReg(iplogs.value)");
ipDf.Show();
// Choose valid log entries that start with 10 and deal with spam
spark.Udf().Registerstring, bool>(
"SpamRegEx",
log => Regex.IsMatch(log, "\\b(?=spam)\\b"));
ipDf.CreateOrReplaceTempView("SpamLogs");
// Apply UDF to get valid, start with 10, spam entries
DataFrame spamDF = spark.Sql(
"SELECT spamlogs.value FROM SpamLogs WHERE SpamRegEx(spamlogs.value)");
int numGetRequests = spamDF
.Collect()
.Where(r => ContainsGet(r.GetAsstring>("value")))
.Count();
// Use regex matching to group data
// Each group matches a column in our log schema
// i.e. first group = first column = IP
public static bool ContainsGet(string logLine)
{
Match match = Regex.Match(logLine, s_apacheRx);
// Determine if valid log entry is a GET request
if (match.Success)
{
Console.WriteLine("Full log entry: ‘{0}‘", match.Groups[0].Value);
// 5th column/group in schema is "method"
if (match.Groups[5].Value == "GET")
{
return true;
}
}
return false;
}
3 运行程序
spark-submit --class org.apache.spark.deploy.dotnet.DotnetRunner --master local /path/to/microsoft-spark-
4 .NET for Apache Spark总结
名词解释
Ad-hoc Query
var mySqlQuery = "SELECT * FROM table WHERE id = " + std_name;
原文链接
文章标题:【译】Using .NET for Apache Spark to Analyze Log Data
文章链接:http://soscw.com/essay/62108.html