Acwing------动态规划

2021-03-15 06:42

阅读:619

标签:分组背包   完全   amp   二进制   进制   线性dp   win   ons   class   

动态规划

背包问题

状态表示

1.集合:所有只考虑前i个物品,且总体积不大于j的所有选法

2.属性:MAX

2.1 去掉k个物品i
2.2 求MAX,f【i - 1】【j - k * v】
2.3 再加回来k个物品i

状态计算:集合的划分

1. 0-1背包(Acwing-2)

朴素做法

#include  
#include 
using namespace std;

const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];

int main() {
    cin >> n >> m;
    
    for (int i = 1; i > v[i] >> w[i];
    
    for (int i = 1; i = v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    }
    
    cout 

一位数组优化

#include  
#include 
using namespace std;

const int N = 1010;
int n, m;
int v[N], w[N];
int f[N];

int main() {
    cin >> n >> m;
    
    for (int i = 1; i > v[i] >> w[i];
    
    for (int i = 1; i = v[i]; --j) {
            f[j] = max(f[j], f[j - v[i]]+ w[i]);
        }
    }
    
    cout 

2.完全背包(Acwing-3)

朴素做法

#include 
#include 

using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];


int main() {
    cin >> n >> m;
    for (int i = 1; i > v[i] >> w[i];
    
    for (int i = 1; i 

优化做法

#include 
#include 

using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];


int main() {
    cin >> n >> m;
    for (int i = 1; i > v[i] >> w[i];
    
    for (int i = 1; i = v[i]) f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
        }
    }
    
    cout 

终极做法

#include 
#include 

using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N];


int main() {
    cin >> n >> m;
    for (int i = 1; i > v[i] >> w[i];
    
    for (int i = 1; i 

3.多重背包-I(Acwing)

朴素做法

#include 
#include 

using namespace std;

const int N = 110;
int n, m;
int v[N], w[N], s[N];
int f[N][N];

int main() {
    cin >> n >> m;
    for (int i = 1; i > v[i] >> w[i] >> s[i];
    
    for (int i = 1; i 

二进制优化

#include 
#include 

using namespace std;

const int N = 25000, M = 2000;
int n, m, cnt = 0;
int v[N], w[N];
int f[N];

int main() {
    cin >> n >> m;
    for (int i = 1; i > a >> b >> s;
        while (k  0) {
            cnt++;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
    }
    
    n = cnt;
    
    for (int i = 1; i = v[i]; j--) {
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    
    cout  

分组背包(Acwing-9)

#include 
#include 

using namespace std;

const int N = 110;
int n, m;
int v[N][N], w[N][N], s[N];
int f[N];

int main() {
    cin >> n >> m;
    for (int i = 1; i > s[i];
        for (int j = 0; j > v[i][j] >> w[i][j];
        }
    }
    
    for (int i = 1;i = 0; --j) {
            for (int k = 0; k 

线性DP

  • 递推方程存在线性关系

数字三角形(Acwing-898)

#include 
using namespace std;

const int N = 510;

int n, INF = 1e9;
int a[N][N], f[N][N];

int main() {
    cin >> n;
    for (int i = 1; i > a[i][j];
        }
    }
    
    for (int i = 0; i 

最长上升子序列(Acwing-895)

#include 
using namespace std;

const int N = 1010, INF = 1e9;
int n, a[N], f[N];

int main() {
    cin >> n;
    for (int i = 1; i > a[i];
    for (int i = 1; i 

最长上升子序列-II(Acwing-896)

#include 
using namespace std;

const int N = 100010;
int n, a[N], f[N];

int main() {
    cin >> n;
    for (int i = 0; i > a[i];
    
    int len = 0;
    f[0] = -2e9;
    for (int i = 0; i > 1;
            if (f[mid] 

最长公共子序列(Acwing-897)

#include 
using namespace std;

const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];

int main () {
    cin >> n >> m;
    scanf("%s%s", a + 1, b + 1);
    
    for (int i = 1; i 

最短编辑距离(Acwing-902)

#include 
#include 
using namespace std;

const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];

int main() {
    scanf("%d%s", &n, a + 1);
    scanf("%d%s", &m, b + 1);
    
    for (int i = 0; i 

区间DP

石子合并(Acwing-282)

#include 
#include 
using namespace std;

const int N = 310;
int n, s[N], f[N][N];

int main() {
    cin >> n;
    for (int i = 1;i > s[i];
    for (int i = 1;i 

Acwing------动态规划

标签:分组背包   完全   amp   二进制   进制   线性dp   win   ons   class   

原文地址:https://www.cnblogs.com/clown9804/p/12426404.html


评论


亲,登录后才可以留言!