bzoj1911: [Apio2010]特别行动队
标签:sum 两种方法 技术分享 clu 分享 string == isp turn
题目链接
bzoj1911: [Apio2010]特别行动队
题解
首先,状态转移方程
\(f_i = max(f_j+A(S_i-S_j)^2+B(S_i-S_j)+C)\)
在这里总结一下推斜率优化的两种方法吧
直接推呀:
设\(j且\(j\)比\(k\)优。
\[f_j+A(S_i-S_j)^2+B(S_i-S_j)+C>f_k+A(S_i-S_k)^2+B(S_i-S_k)+C\]
\[f_j-f_k+A(2S_i-S_j-S_k)*(S_k-S_j)+B(S_k-S_j)>0\]
\[f_j+S_j^2-2AS_iS_j-BS_j >f_k+S_k^2-2AS_iS_k-BS_k\]
设\(G_j=f_j+AS_j^2-BS_j\),\(H_j=-2AS_j\)
得到
\(\frac{G_j-G_k}{H_j-H_k}
找直线解析式
代码
#include
#include
#include
#define LL long long
inline LL read() {
LL x = 0,f = 1;
char c = getchar();
while(c '0' || c > '9'){ if(c == '-')f = -1; c = getchar();}
while(c '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x * f;
}
const int maxn = 1000007;
LL n,a,b,c;
LL sum[maxn];
LL dp[maxn];
LL Y (int i) { return dp[i] + a * sum[i] * sum[i] - b * sum[i]; }
LL X (int i) { return sum[i]; }
double slop(int i,int j) { return 1.0 * (Y(i) - Y(j)) / (X(i) - X(j)); }
int q[maxn];
int main() {
n = read(),a = read(),b = read(),c = read();
for(int i = 1;i 1];
for(int l = 0,r = 0,i = 1;i while(l 1]) > 2 * a * sum[i])l ++;
//dp[i] = dp[q[l]] + a * (sum[i] - sum[q[l]]) * (sum[i] - sum[q[l]]) + b * (sum[i] - sum[q[l]] + c);
dp[i] = -(2 * a * sum[i] * X(q[l]) - Y(q[l]) - a * sum[i] * sum[i] - b * sum[i] - c);
while(l 1],q[r]) "%lld\n",dp[n]);
return 0;
}
bzoj1911: [Apio2010]特别行动队
标签:sum 两种方法 技术分享 clu 分享 string == isp turn
原文地址:https://www.cnblogs.com/sssy/p/9230914.html
评论