tensorflow 2.0 学习 (十一)卷积神经网络 (一)MNIST数据集训练与预测 LeNet-5网络
2021-04-21 16:29
标签:梯度 div var cal ble axis des network cti 网络结构如下: 代码如下: 训练和测试结果如下: tensorflow 2.0 学习 (十一)卷积神经网络 (一)MNIST数据集训练与预测 LeNet-5网络 标签:梯度 div var cal ble axis des network cti 原文地址:https://www.cnblogs.com/heze/p/12248251.html 1 # encoding: utf-8
2
3 import tensorflow as tf
4 from tensorflow import keras
5 from tensorflow.keras import layers, Sequential, losses, optimizers, datasets
6 import matplotlib.pyplot as plt
7
8 Epoch = 30
9 path = r‘G:\2019\python\mnist.npz‘
10 (x, y), (x_val, y_val) = tf.keras.datasets.mnist.load_data(path) # 60000 and 10000
11 print(‘datasets:‘, x.shape, y.shape, x.min(), x.max())
12
13 x = tf.convert_to_tensor(x, dtype = tf.float32) #/255. #0:1 ; -1:1(不适合训练,准确度不高)
14 # x = tf.reshape(x, [-1, 28*28])
15 y = tf.convert_to_tensor(y, dtype=tf.int32)
16 # y = tf.one_hot(y, depth=10)
17 #将60000组训练数据切分为600组,每组100个数据
18 train_db = tf.data.Dataset.from_tensor_slices((x, y))
19 train_db = train_db.shuffle(60000) #尽量与样本空间一样大
20 train_db = train_db.batch(100) #128
21
22 x_val = tf.cast(x_val, dtype=tf.float32)
23 y_val = tf.cast(y_val, dtype=tf.int32)
24 test_db = tf.data.Dataset.from_tensor_slices((x_val, y_val))
25 test_db = test_db.shuffle(10000)
26 test_db = test_db.batch(100) #128
27
28 network = Sequential([
29 layers.Conv2D(6, kernel_size=3, strides=1), # 6个卷积核
30 layers.MaxPooling2D(pool_size=2, strides=2), # 池化层,高宽各减半
31 layers.ReLU(),
32 layers.Conv2D(16, kernel_size=3, strides=1), # 16个卷积核
33 layers.MaxPooling2D(pool_size=2, strides=2), # 池化层,高宽各减半
34 layers.ReLU(),
35 layers.Flatten(),
36
37 layers.Dense(120, activation=‘relu‘),
38 layers.Dense(84, activation=‘relu‘),
39 layers.Dense(10)
40 ])
41 network.build(input_shape=(4, 28, 28, 1))
42 network.summary()
43 optimizer = tf.keras.optimizers.RMSprop(0.001) # 创建优化器,指定学习率
44 criteon = losses.CategoricalCrossentropy(from_logits=True)
45
46 # 保存训练和测试过程中的误差情况
47 train_tot_loss = []
48 test_tot_loss = []
49
50
51 for step in range(Epoch):
52 cor, tot = 0, 0
53 for x, y in train_db:
54 with tf.GradientTape() as tape: # 构建梯度环境
55 # 插入通道维度 [None,28,28] -> [None,28,28,1]
56 x = tf.expand_dims(x, axis=3)
57 out = network(x)
58 y_true = tf.one_hot(y, 10)
59 loss =criteon(y_true, out)
60
61 out_train = tf.argmax(out, axis=-1)
62 y_train = tf.cast(y, tf.int64)
63 cor += float(tf.reduce_sum(tf.cast(tf.equal(y_train, out_train), dtype=tf.float32)))
64 tot += x.shape[0]
65
66 grads = tape.gradient(loss, network.trainable_variables)
67 optimizer.apply_gradients(zip(grads, network.trainable_variables))
68 print(‘After %d Epoch‘ % step)
69 print(‘training acc is ‘, cor/tot)
70 train_tot_loss.append(cor/tot)
71
72 correct, total = 0, 0
73 for x, y in test_db:
74 x = tf.expand_dims(x, axis=3)
75 out = network(x)
76 pred = tf.argmax(out, axis=-1)
77 y = tf.cast(y, tf.int64)
78 correct += float(tf.reduce_sum(tf.cast(tf.equal(y, pred), dtype=tf.float32)))
79 total += x.shape[0]
80 print(‘testing acc is : ‘, correct/total)
81 test_tot_loss.append(correct/total)
82
83
84 plt.figure()
85 plt.plot(train_tot_loss, ‘b‘, label=‘train‘)
86 plt.plot(test_tot_loss, ‘r‘, label=‘test‘)
87 plt.xlabel(‘Epoch‘)
88 plt.ylabel(‘ACC‘)
89 plt.legend()
90 plt.savefig(‘exam8.2_train_test_CNN1.png‘)
91 plt.show()
文章标题:tensorflow 2.0 学习 (十一)卷积神经网络 (一)MNIST数据集训练与预测 LeNet-5网络
文章链接:http://soscw.com/essay/77688.html