R语言中自编基尼系数的CART回归决策树的实现

2021-04-21 21:30

阅读:448

标签:spl   网站   序列   water   tail   预测   gre   segment   分割   

技术图片

原文链接 

http://tecdat.cn/?p=14056

 

 本文为了说明回归树的构造(使用CART方法),考虑以下模拟数据集,

 

  1.  
    > set.seed(1)
  2.  
    > n=200
  3.  
    > X1=runif(n)
  4.  
    > X2=runif(n)
  5.  
    > P=.8*(X1<.3>
  6.  
    + .2*(X1<.3>.5)+
  7.  
    + .8*(X1>.3)*(X1<.85>
  8.  
    + .2*(X1>.3)*(X1<.85>.3)+
  9.  
    + .8*(X1>.85)*(X2<.7>
  10.  
    + .2*(X1>.85)*(X2>.7)
  11.  
    > Y=rbinom(n,size=1,P)
  12.  
    > B=data.frame(Y,X1,X2)
  13. 具有一个因变量(感兴趣的变量)和两个连续的自变量( 变量技术图片 和技术图片)。

    1.  
      > tail(B)
    2.  
      Y X1 X2
    3.  
      195 0 0.2832325 0.1548510
    4.  
      196 0 0.5905732 0.3483021
    5.  
      197 0 0.1103606 0.6598210
    6.  
      198 0 0.8405070 0.3117724
    7.  
      199 0 0.3179637 0.3515734
    8.  
      200 1 0.7828513 0.1478457

    理论分区如下

    技术图片

     

    在这里,可以将样本绘制在下方(请注意,第一个变量在上方的y轴上,在下方的x轴上),蓝色点   等于1,红色点等于0,

    1.  
      > plot(X1,X2,col="white")
    2.  
      > points(X1[Y=="1"],X2[Y=="1"],col="blue",pch=19)
    3.  
      > points(X1[Y=="0"],X2[Y=="0"],col="red",pch=19)

    技术图片

     

    为了构造树,我们需要一个分区critera。最标准的可能是Gini的索引,当将s分为两类时,可以写出该索引,  在此表示 技术图片

     

    或  将分为三类时,表示为 技术图片

    等等,这里技术图片 只是属于分区的观测值的计数,  技术图片 其   取值为技术图片。但是可以考虑其他标准,例如卡方距离,

     

    在传统上,当我们考虑两个等级时,或者在三个等级的情况下。

    同样,这里的想法是使距离最大化:想法是区分,所以我们希望样本尽可能不独立。要计算基尼系数

     

    我们只需构造列联表,然后计算上面给出的数量。首先,假设只有一个解释变量。我们将样本一分为二,并使用所有可能的分割值技术图片,即

    技术图片

    然后,我们为所有这些值计算基尼系数。结是使基尼系数最大化的值。有了第一个节点后,我们将继续保留(从现在开始将其称为技术图片)。我们通过寻找最佳第二选择来重申:给定一个根节点,考虑将样本一分为三的值,并给出最高的基尼系数,因此,我们考虑以下分区

    技术图片

    或这个

    技术图片

    也就是说,我们在上一个结的下方或上方分割。然后我们进行迭代。代码可以是这样的,

    1.  
       
    2.  
      > for(s in 1:4){
    3.  
      + for(i in 1:length(u)){
    4.  
       
    5.  
       
    6.  
      + vgini[i]=GINI(Y,I)
    7.  
       
    8.  
       
    9.  
      + }
    10.  
      +
    11.  
      +
    12.  
      + cat("knot",k,u[k],"\n")
    13.  
      +
    14.  
      +
    15.  
      + }
    16.  
      knot 69 0.3025479
    17.  
      knot 133 0.5846202
    18.  
      knot 72 0.3148172
    19.  
      knot 111 0.4811517

    第一步,基尼系数的值如下:

    技术图片

     

    最高约为0.3。然后,我们尝试分三部分构造一个分区(拆分为0.3以下或以上)。我们得到以下基尼系数图(作为第二个节点的函数)

    技术图片

     当样本在0.6左右分裂(这成为我们的第二个节点)时最大。等,现在,让我们将代码与标准R函数进行比较,

    1.  
      node), split, n, deviance, yval
    2.  
      * denotes terminal node
    3.  
       
    4.  
      1) root 200 49.8800 0.4750
    5.  
      2) X2
    6.  
      3) X2 > 0.302548 131 28.8900 0.3282
    7.  
      6) X2
    8.  
      12) X2
    9.  
      13) X2 > 0.324591 58 14.5000 0.5000 *
    10.  
      7) X2 > 0.58462 66 10.4400 0.1970 *
    11. 我们确实获得了类似的结:第一个为0.302,第二个为0.584。因此,构造树并不难...

      现在,如果我们考虑两个解释变量,该怎么办?保持不变,除了分区的编写现在变得更加复杂。为了找到第一个节点,我们考虑了两个分量的所有值,然后再次保持最大化基尼指数的值,

      1.  
         
      2.  
        > plot(u1,gini[,1],ylim=range(gini),col="green",type="b",xlab="X1",ylab="Gini index")
      3.  
        > abline(h=mg,lty=2,col="red")
      4.  
        > if(i==1){points(u1[which.max(gini[,1])],mg,pch=19,col="red")
      5.  
        + segments(u1[which.max(gini[,1])],mg,u1[which.max(gini[,1])],-100000)}
      6.  
        > u2[which.max(gini[,2])]
      7.  
        [1] 0.3025479

      这些图如下所示并获得了右侧的分区,

      技术图片

       

      或者我们分割第二个分区(然后得到以下分区),

      技术图片

       

      在这里,最好先分割第二个变量。实际上,我们回到了前面讨论的一维情况:正如预期的那样,最好在0.3左右进行分割。以下代码已确认这一点,

      1.  
         
      2.  
        var n dev yval splits.cutleft splits.cutright
      3.  
        1 X2 200 49.875000 0.4750000 0.302548
      4.  
        2 X1 69 12.811594 0.7536232 0.800113
      5.  
        4 57 8.877193 0.8070175
      6.  
        5 12 3.000000 0.5000000

      对于第二个结,应考虑四种情况:在第二个变量上再次分裂(再次),在上一个结之上或之下(请参见左下方)或在第一个变量分裂。然后在上一个结的下方或上方设置一个分区(请参见右下方),

      技术图片

       

      为了使树可视化,代码如下

      技术图片

       

      注意,我们也可以可视化该分区。


      参考文献

      1.从决策树模型看员工为什么离职

      2.R语言基于树的方法:决策树,随机森林,套袋Bagging,增强树数据分析

      3.python中使用scikit-learn和pandas决策树进行鸢尾花数据分类

      4.R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归

      5.R语言k-Shape算法股票价格时间序列聚类

      6.r语言鸢尾花iris数据集的层次聚类

      7.Python Monte Carlo K-Means聚类实战研究

      8.用R进行网站评论文本挖掘聚类

      9.Python中的Apriori关联算法市场购物篮分析

      10.通过Python中的Apriori算法进行关联规则挖掘

      11.使用LSTM神经网络预测爱尔兰的电力消耗

      12.用R语言实现神经网络预测股票实例

      R语言中自编基尼系数的CART回归决策树的实现

      标签:spl   网站   序列   water   tail   预测   gre   segment   分割   

      原文地址:https://www.cnblogs.com/tecdat/p/13279014.html

上一篇:Python3入门系列之-----字符串

下一篇:黑马SpringBoot4:SpringBoot多个yml文件配置


评论


亲,登录后才可以留言!

热门文章

推荐文章

最新文章

置顶文章