线性代数之行列式的C#研究实现

2021-04-26 21:26

阅读:309

标签:tty   计算过程   class   c#   arp   type   write   math   minus   

最近学习机器学习 才发现以前数学没有学好 开始从线性代数开始学起 读完行列式一章写了些C#的代码学习一下。

直接上C#代码:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;
using System.IO;

namespace LYF.Math
{
    /// 
    /// 行列式 Determinant
    /// 
    [SerializableAttribute]
    [ComVisibleAttribute(true)]
    public class Determinant where T : IComparable, IFormattable, IConvertible, IComparable, IEquatable
    {
        T[,] tarr = null;
        public Determinant(int n)
        {
            tarr = new T[n, n];
        }

        public Determinant(T[,] arrT)
        {
            if (arrT == null || arrT.GetLength(0) != arrT.GetLength(1) || arrT.GetLength(0) 
        /// 获取元素值
        /// 
        /// 
        /// 
        /// 
        public T this[int i, int j]
        {
            //实现索引器的get方法
            get
            {
                return GetItem(i, j);
            }

            //实现索引器的set方法
            set
            {
                SetItem(i, j, value);
            }
        }

        /// 
        /// 获取元素的余子式
        /// 
        /// 
        /// 
        /// 
        public Determinant A(int i, int j)
        {
            if (N == 1)
            {
                return null;
            }
            else if (i>N||j>N)
            {
                return null;
            }
            else
            {
                Determinant a = new Determinant(N - 1);
                for (int m = 1; m = i)
                        {
                            p = m + 1;
                        }
                        if (q >= j)
                        {
                            q = n + 1;
                        }
                        a[m, n] = this[p,q];
                    }
                }
                return a;
            }
        }


        /// 
        /// 设置行列式的值
        /// 
        /// 行数(从1开始)
        /// 列数(从1开始)
        /// 值
        public void SetItem(int i, int j, T value)
        {
            if (tarr == null)
            {
                throw new MathException("行列式未正确初始化");
            }
            else if (i > N || j > N)
            {
                throw new MathException("超出行列式索引范围");
            }
            else
            {
                tarr[i - 1, j - 1] = value;
            }
        }

        public void SetItem(T[,] arrT)
        {
            if (arrT == null || tarr == null)
            {
                throw new MathException("不能为空");
            }
            else if (arrT.GetLength(0) != N || arrT.GetLength(1) != N)
            {
                throw new MathException("传入阶数不同");
            }
            else
            {
                for (int m = 0; m 
        /// 设置行列式的值
        /// 
        /// 行数(从1开始)
        /// 列数(从1开始)
        /// 值
        public T GetItem(int i, int j)
        {
            if (tarr == null)
            {
                throw new MathException("行列式未正确初始化");
            }
            else if (i > N || j > N)
            {
                throw new MathException("超出行列式索引范围");
            }
            else
            {
                return tarr[i-1, j-1];
            }
        }

        /// 
        /// 输出行列式信息
        /// 
        /// 
        public override string ToString()
        {
            StringBuilder sbRs = new StringBuilder();
            if(tarr!=null)
            {
                for (int m = 0; m 
        /// 获取行列式的阶数
        /// 
        public int N
        {
            get{
                if (tarr != null)
                {
                    return tarr.GetLength(0);
                }
                else
                {
                    return 0;
                }
            }
            
        }


        private string typeName = string.Empty;
        private string GetType()
        {
            if (string.IsNullOrEmpty(typeName))
            {
                typeName=typeof(T).Name;
                File.AppendAllText("E:\\op.txt", typeName);
            }
            return typeName;

        }

        /// 
        /// 获取行列式的值
        /// 
        public T Value
        {
            get
            {
                if (N == 1)
                {
                    return tarr[0, 0];
                }
                else if (N == 2)
                {
                    return Minus(MUL(tarr[0, 0], tarr[1, 1]), MUL(tarr[0, 1], tarr[1, 0]));
                }
                else
                {
                    T sum = default(T);
                    for (int i = 1; i 
        /// 加法
        /// 
        /// 
        /// 
        /// 
        private T Add(T left, T right)
        {
            switch (GetType())
            {
                case "Int16":
                    return ((T)(object)((short)(object)left + (short)(object)right));
                case "Int32":
                    return ((T)(object)((int)(object)left + (int)(object)right));
                case "Int64":
                    return ((T)(object)((long)(object)left + (long)(object)right));
                case "Single":
                    return ((T)(object)((float)(object)left + (float)(object)right));
                case "Double":
                    return ((T)(object)((double)(object)left + (double)(object)right));
                case "Decimal":
                    return ((T)(object)((decimal)(object)left + (decimal)(object)right));
            }
            throw new MathException("不支持的操作类型");
        }

        /// 
        /// 减法
        /// 
        /// 
        /// 
        /// 
        private T Minus(T left, T right)
        {
            switch (GetType())
            {
                case "Int16":
                    return ((T)(object)((short)(object)left - (short)(object)right));
                case "Int32":
                    return ((T)(object)((int)(object)left - (int)(object)right));
                case "Int64":
                    return ((T)(object)((long)(object)left - (long)(object)right));
                case "Single":
                    return ((T)(object)((float)(object)left - (float)(object)right));
                case "Double":
                    return ((T)(object)((double)(object)left - (double)(object)right));
                case "Decimal":
                    return ((T)(object)((decimal)(object)left - (decimal)(object)right));
            }
            throw new MathException("不支持的操作类型");
        }

        /// 
        /// 乘法
        /// 
        /// 
        /// 
        /// 
        private T MUL(T left, T right)
        {
            switch (GetType())
            {
                case "Int16":
                    return ((T)(object)((short)(object)left * (short)(object)right));
                case "Int32":
                    return ((T)(object)((int)(object)left * (int)(object)right));
                case "Int64":
                    return ((T)(object)((long)(object)left * (long)(object)right));
                case "Single":
                    return ((T)(object)((float)(object)left * (float)(object)right));
                case "Double":
                    return ((T)(object)((double)(object)left * (double)(object)right));
                case "Decimal":
                    return ((T)(object)((decimal)(object)left * (decimal)(object)right));
            }
            throw new MathException("不支持的操作类型");
        }


    }
}

  以上代码就是对行列式的封装 可以求值获得余子式 很基本的东西 求值的话主要用了递归的方式 因为泛型的原因导致计算过程重复拆箱装箱 不过目前好像也没有什么太好的方法了。反正就是学习 所以性能无所谓了。

然后就是调用了直接上调用代码:

            int[,] aaa = new int[4, 4]{{1,2,3,6},
                                        {4,5,7,8},
                                        {7,8,9,10},
                                        {3,8,4,3}};

            //LYF.Math.Determinant d = new Determinant(4);
            LYF.Math.Determinant d = new Determinant(aaa);
            d.SetItem(aaa);
            Console.WriteLine("当前行列式:");
            Console.WriteLine(d.ToString());
            Console.WriteLine("余子式M11:");
            Console.WriteLine(d.A(1, 1).ToString());
            Console.WriteLine("余子式M12:");
            Console.WriteLine(d.A(1, 2).ToString());
            Console.WriteLine("余子式M22:");
            Console.WriteLine(d.A(2, 2).ToString());
            Console.WriteLine("N="+d.N);
            Console.WriteLine("行列式的值为:"+d.Value.ToString());
            Console.Read();
  

  执行结果如下:

技术分享图片

 

线性代数之行列式的C#研究实现

标签:tty   计算过程   class   c#   arp   type   write   math   minus   

原文地址:http://www.cnblogs.com/devgis/p/7874305.html


评论


亲,登录后才可以留言!