TensorFlow 图像分类模型 inception_resnet_v2 模型导出、冻结与使用
2021-04-30 23:27
标签:slim tail 版本 nload version 改变 ntp 读取文件 run 作为一名深度学习萌新,项目突然需要使用图像分类模型去作分类,因此找到了TensorFlow的模型库,使用它的框架进行训练和后续的操作,项目地址:https://github.com/tensorflow/models/tree/master/research/slim。 在使用真正的数据集之前,我首先使用的是它提供的flowers的数据集,用的模型是inception_resnet_v2,因为top-5 Accuracy比较高嘛。 然后我安装flowers的目录结构,将我的数据按照类似的结构进行组织; 仿照download_and_convert_flowers.py增加了自己的数据处理文件convert_normal_data.py; 仿照数据集读取文件flowers.py增加了自己的文件normal.py; 然后使用项目的教程,一步步的进行fine-tuning,直到准确率到了百分之九十以上,停止训练。 但是这个时候在导出模型的时候遇到了坑。 实际上教程写得很简单,就是先导出模型的框架: Saves out a GraphDef containing the architecture of the model. 然后再往框架里把训练好的checkpoints写到graph中: If you then want to use the resulting model with your own or pretrained checkpoints as part of a mobile model, you can run freeze_graph to get a graph def with the variables inlined 它放出来的教程是这样的: 我安装这个格式去把模型改成inception_resnet_v2,然后把checkpoint导进去,总是会报: tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [1001] rhs shape= [2] 找了个群问了一下,说是模型最后一层输出的数目没有改变,于是重新理了思路,去看了export_inference_graph.py的源码,发现里面有个num_classes的参数,是用来决定最后输出层的数量的,于是最后增加了一下导出参数,最后的命令为: 最后获得我的graph.pb。 冻结是个大坑,为什么呢,因为官方给出的教程是使用bazel先编译freeze_graph,然后再使用它进行模型冻结。麻烦来了,首先Ubuntu 18.04无法使用apt进行安装,所以一番折腾,使用它放出的install脚本进行了安装。 然后是需要git clone TensorFlow的源码进行编译,这个编译期间又报了很多错,而且我编译失败后,conda环境的TensorFlow GPU版本还不能用了。。。 最后发现,如果你已经使用conda或者git安装了TensorFlow,直接使用 找出这个python文件的位置就行了,最后使用命令: 最后终于导出了模型。 主要参考了博文【深度学习-模型eval+模型导出】使用Tensorflow Slim对训练的模型进行评估+导出模型,进行微调: 最后使用一张图片进行测试: 最后输出: unsuited (score = 0.94713) 虽然有点高兴,但是蓦然回首,还是很心累,然后现在conda的TensorFlow GPU版本跪了,需要修复。 (1) 【深度学习-模型eval+模型导出】使用Tensorflow Slim对训练的模型进行评估+导出模型 (2) 【Tensorflow系列】使用Inception_resnet_v2训练自己的数据集并用Tensorboard监控 (完) TensorFlow 图像分类模型 inception_resnet_v2 模型导出、冻结与使用 标签:slim tail 版本 nload version 改变 ntp 读取文件 run 原文地址:https://www.cnblogs.com/harrymore/p/12149756.html1. 背景
2. 导出Inference Graph
$ python export_inference_graph.py --alsologtostderr --model_name=inception_v3 --output_file=/tmp/inception_v3_inf_graph.pb
[[{{node save/Assign_916}}]]python export_inference_graph.py --alsologtostderr --model_name=${MODEL_NAME} --dataset_name=normal --dataset_dir=${DATASET_DIR} --output_file=/you/path/to/sava/${MODEL_NAME}_inf_graph.pb
3. 冻结Graph
find / -name freeze_graph.py
python tensorflow/python/tools/freeze_graph.py --input_graph=/you/path/to/sava/${MODEL_NAME}_inf_graph.pb --input_checkpoint=/you/trained/checkpoints/model.ckpt-10000 --input_binary=true --output_node_names=InceptionResnetV2/Logits/Predictions --output_graph=/your/path/to/save/frozen_graph.pb
4. 使用模型进行预测
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import re
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
FLAGS = None
class NodeLookup(object):
def __init__(self, label_lookup_path=None):
self.node_lookup = self.load(label_lookup_path)
def load(self, label_lookup_path):
node_id_to_name = {}
with open(label_lookup_path) as f:
for line in f:
line_list = line.strip().split(":")
node_id_to_name[int(line_list[0])] = line_list[1]
return node_id_to_name
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ‘‘
return self.node_lookup[node_id]
def create_graph():
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(FLAGS.model_path, ‘rb‘) as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name=‘‘)
def preprocess_for_eval(image, height, width,
central_fraction=0.875, scope=None):
with tf.name_scope(scope, ‘eval_image‘, [image, height, width]):
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
# Crop the central region of the image with an area containing 87.5% of
# the original image.
if central_fraction:
image = tf.image.central_crop(image, central_fraction=central_fraction)
if height and width:
# Resize the image to the specified height and width.
image = tf.expand_dims(image, 0)
image = tf.image.resize_bilinear(image, [height, width],
align_corners=False)
image = tf.squeeze(image, [0])
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
return image
def run_inference_on_image(image):
"""Runs inference on an image.
Args:
image: Image file name.
Returns:
Nothing
"""
with tf.Graph().as_default():
image_data = tf.gfile.FastGFile(image, ‘rb‘).read()
image_data = tf.image.decode_jpeg(image_data)
image_data = preprocess_for_eval(image_data, 299, 299)
image_data = tf.expand_dims(image_data, 0)
with tf.Session() as sess:
image_data = sess.run(image_data)
# Creates graph from saved GraphDef.
create_graph()
with tf.Session() as sess:
softmax_tensor = sess.graph.get_tensor_by_name(‘InceptionResnetV2/Logits/Predictions:0‘)
predictions = sess.run(softmax_tensor,
{‘input:0‘: image_data})
predictions = np.squeeze(predictions)
# Creates node ID --> English string lookup.
node_lookup = NodeLookup(FLAGS.label_path)
top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1]
for node_id in top_k:
human_string = node_lookup.id_to_string(node_id)
score = predictions[node_id]
print(‘%s (score = %.5f)‘ % (human_string, score))
def main(_):
image = FLAGS.image_file
run_inference_on_image(image)
if __name__ == ‘__main__‘:
parser = argparse.ArgumentParser()
parser.add_argument(
‘--model_path‘,
type=str,
)
parser.add_argument(
‘--label_path‘,
type=str,
)
parser.add_argument(
‘--image_file‘,
type=str,
default=‘‘,
help=‘Absolute path to image file.‘
)
parser.add_argument(
‘--num_top_predictions‘,
type=int,
default=5,
help=‘Display this many predictions.‘
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
python classify_image_inception_resnet_v2.py --model_path /your/saved/path/frozen_graph.pb --label_path /your/path/labels.txt --image_file /your/path/test.jpg
suited (score = 0.05287)5. 参考
文章标题:TensorFlow 图像分类模型 inception_resnet_v2 模型导出、冻结与使用
文章链接:http://soscw.com/essay/80601.html