Python之酒店评论分词、词性标注、TF-IDF、词频统计、词云
2021-05-03 04:28
标签:eve 词性标注 dcl type image from 装修 oss min 1.jieba分词与词性标注 思路: (1)利用pandas读取csv文件中的酒店客户评论,并创建3个新列用来存放分词结果、词性标注结果、分词+词性标注结果 (2)利用jieba分词工具的posseg包,同时实现分词与词性标注 (3)利用停用词表对分词结果进行过滤 (4)将分词结果以20000条为单位写入txt文档中,便于后续的词频统计以词云的制作 (5)将最终的分词结果与词性标注结果存储到csv文件中 2.词频统计 3.词云制作 首先利用conda安装wordcloud 最简单的入门案例: 效果图: 我的词云案例: 效果图: 参考文献:https://www.cnblogs.com/wkfvawl/p/11585986.html 4.TF-IDF 关键词提取 Python之酒店评论分词、词性标注、TF-IDF、词频统计、词云 标签:eve 词性标注 dcl type image from 装修 oss min 原文地址:https://www.cnblogs.com/luckyplj/p/13199336.html# coding:utf-8
import pandas as pd
import jieba.posseg as pseg
import jieba
import time
from jieba.analyse import *
df=pd.read_csv(‘csvfiles/hotelreviews_after_filter_utf.csv‘,header=None) #hotelreviews50_1.csv文件与.py文件在同一级目录下
#在读数之后自定义标题
columns_name=[‘mysql_id‘,‘hotelname‘,‘customername‘,‘reviewtime‘,‘checktime‘,‘reviews‘,‘scores‘,‘type‘,‘room‘,‘useful‘,‘likenumber‘]
df.columns=columns_name
df[‘review_split‘]=‘new‘ #创建分词结果列:review_split
df[‘review_pos‘]=‘new‘ #创建词性标注列:review_pos
df[‘review_split_pos‘]=‘new‘ #创建分词结果/词性标注列:review_split_pos
# 调用jieba分词包进行分词
def jieba_cut(review):
review_dict = dict(pseg.cut(review))
return review_dict
# 创建停用词列表
def stopwordslist(stopwords_path):
stopwords = [line.strip() for line in open(stopwords_path,encoding=‘UTF-8‘).readlines()]
return stopwords
# 获取分词结果、词性标注结果、分词结果/分词标注结果的字符串
def get_fenciresult_cixin(review_dict_afterfilter):
keys = list(review_dict_afterfilter.keys()) #获取字典中的key
values = list(review_dict_afterfilter.values())
review_split="/".join(keys)
review_pos="/".join(values)
review_split_pos_list = []
for j in range(0,len(keys)):
review_split_pos_list.append(keys[j]+"/"+values[j])
review_split_pos=",".join(review_split_pos_list)
return review_split,review_pos,review_split_pos
stopwordslist=stopwordslist("stopwords_txt/total_stopwords_after_filter.txt")
# review="刚刚才离开酒店,这是一次非常愉快满意住宿体验。酒店地理位置对游客来说相当好,离西湖不行不到十分钟,离地铁口就几百米,周围是繁华商业中心,吃饭非常方便。酒店外观虽然有些年头,但里面装修一点不过时,我是一个对卫生要求高的,对比很满意,屋里有消毒柜可以消毒杯子,每天都有送两个苹果。三楼还有自助洗衣,住客是免费的,一切都干干净净,服务也很贴心,在这寒冷的冬天,住这里很温暖很温馨"
#分词与词性标注
def fenci_and_pos(review):
#01 调用jieba的pseg同时进行分词与词性标注,返回一个字典 d = {key1 : value1, key2 : value2 }
review_dict= jieba_cut(review)
# print(review_dict)
# 02 停用词过滤
review_dict_afterfilter = {}
for key, value in review_dict.items():
if key not in stopwordslist:
review_dict_afterfilter[key] = value
else:
pass
# print(review_dict_afterfilter)
#03 获取分词结果、词性标注结果、分词+词性结果
review_split, review_pos,review_split_pos = get_fenciresult_cixin(review_dict_afterfilter)
return review_split,review_pos,review_split_pos
def fenci_pos_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
# fenci_and_pos(review)
# jieba.load_userdict(‘stopwords_txt/user_dict.txt‘) #使用用户自定义的词典
start_time = time.time()
review_count=0
txt_id = 1
for index,row in df.iterrows():
reviews=row[‘reviews‘]
review_split, review_pos, review_split_pos=fenci_and_pos(reviews)
# print(review_split)
# print(review_pos)
# print(review_split_pos)
review_mysql_id=row[‘mysql_id‘]
print(review_mysql_id) #输出当前分词的评论ID
df.loc[index,‘review_split‘]=review_split
df.loc[index,‘review_pos‘]=review_pos
df.loc[index,‘review_split_pos‘]=review_split_pos
#review_split 将分词结果逐行写入txt文档中
if review_count:
review_count+=1 #计数+1
review_split_txt_path = ‘split_result_txt/split_txt_‘ + str(txt_id) + ‘.txt‘
f = open(review_split_txt_path, ‘a‘, encoding=‘utf-8‘)
f.write(‘\n‘ + review_split)
f.close()
else:
txt_id+=1
review_count=0
review_split_txt_path = ‘split_result_txt/split_txt_‘ + str(txt_id) + ‘.txt‘
f = open(review_split_txt_path, ‘a‘, encoding=‘utf-8‘)
f.write(‘\n‘ + review_split)
f.close()
df.to_csv(‘csvfiles/hotelreviews_fenci_pos.csv‘, header=None, index=False) # header=None指不把列号写入csv当中
# 计算分词与词性标注所用时间
end_time = time.time()
fenci_mins, fenci_secs = fenci_pos_time(start_time, end_time)
print(f‘Fenci Time: {fenci_mins}m {fenci_secs}s‘)
print("hotelreviews_fenci_pos.csv文件分词与词性标注已完成")
#词频统计函数
def wordfreqcount(review_split_txt_path):
wordfreq = {} # 词频字典
f = open(review_split_txt_path, ‘r‘, encoding=‘utf-8‘) #打开分词结果的txt文件
review_split = ""
#逐行读取文件,将读取的字符串用/切分,遍历切分结果,统计词频
for line in f.readlines():
review_words = line.split("/")
keys = list(wordfreq.keys())
for word in review_words:
if word in keys:
wordfreq[word] = wordfreq[word] + 1
else:
wordfreq[word] = 1
word_freq_list = list(wordfreq.items())
word_freq_list.sort(key=lambda x: x[1], reverse=True)
return word_freq_list
#设置分词结果保存的txt路径
txt_id = 1
review_split_txt_path = ‘split_result_txt/split_txt_‘ + str(txt_id) + ‘.txt‘
word_freq_list=wordfreqcount(review_split_txt_path)
#输出词频前10的词汇及其出现频次
for i in range(10):
print(word_freq_list[i])
conda install -c conda-forge wordcloud
import wordcloud
# 构建词云对象w,设置词云图片宽、高、字体、背景颜色等参数
w = wordcloud.WordCloud(width=1000,height=700,background_color=‘white‘,font_path=‘msyh.ttc‘)
# 调用词云对象的generate方法,将文本传入
w.generate(‘从明天起,做一个幸福的人。喂马、劈柴,周游世界。从明天起,关心粮食和蔬菜。我有一所房子,面朝大海,春暖花开‘)
# 将生成的词云保存为output2-poem.png图片文件,保存到当前文件夹中
w.to_file(‘output2-poem.png‘)
import jieba
import wordcloud
# 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
import imageio
mk = imageio.imread("pic/qiqiu2.png")
# 构建并配置词云对象w
w = wordcloud.WordCloud(
max_words=200, # 词云显示的最大词数
background_color=‘white‘,
mask=mk,
font_path=‘msyh.ttc‘, #字体路径,文件中没有(应该是无效设置)
)
#设置分词结果保存的txt路径
txt_id = 1
review_split_txt_path = ‘split_result_txt/split_txt_‘ + str(txt_id) + ‘.txt‘
f = open(review_split_txt_path, ‘r‘, encoding=‘utf-8‘)
string=""
for line in f.readlines():
string+=line
print(string)
# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)
# 将词云图片导出到当前文件夹
w.to_file(‘output5-tongji.png‘)
import jieba
txt_id=1
review_split_txt_path=‘split_result_txt/split_txt_‘+str(txt_id)+‘.txt‘
f = open(review_split_txt_path, ‘r‘,encoding=‘utf-8‘)
review_split=""
for line in f.readlines():
review_split+=line
print("review_split:"+review_split)
# test_reviews="刚刚才离开酒店,这是一次非常愉快满意住宿体验。"
# review_split, review_pos, review_split_pos=fenci_and_pos(test_reviews)
# print(review_split)
keywords = jieba.analyse.extract_tags(review_split,topK = 10, withWeight = True)
print(‘【TF-IDF提取的关键词列表:】‘)
print(keywords) #采用默认idf文件提取的关键词
文章标题:Python之酒店评论分词、词性标注、TF-IDF、词频统计、词云
文章链接:http://soscw.com/essay/81638.html