梯度下降常见算法 BGD, SGD, MBGD 简介
2021-05-03 16:28
标签:最快 sgd ram algorithm inline dom 停止 比较 lan An overview of gradient descent optimization algorithms 梯度方向是函数变化率最大的方向,是函数增长最快的方向。 ex: 从山上走到谷底 \(x_j^{(i+1)} = x_j^{(i)}-\eta \cdot \frac{\partial f}{\partial x_j}(x^{(i)})\), 对\(i>0\). 表示第j个参数,第i次迭代。 常见变形有:BGD,SGD,MBGD等等 梯度下降常见算法 BGD, SGD, MBGD 简介 标签:最快 sgd ram algorithm inline dom 停止 比较 lan 原文地址:https://www.cnblogs.com/xuwanwei/p/13197002.html参考文献
梯度下降 GD(Gradient Descent)
BGD(Batch Gradient Descent)
for i in range ( nb_epochs ):
params_grad = evaluate_gradient ( loss_function , data , params )
params = params - learning_rate * params_grad
SGD (Stochastic Gradient Descent)
for i in range ( nb_epochs ):
np . random . shuffle ( data )
for example in data :
params_grad = evaluate_gradient ( loss_function , example , params )
params = params - learning_rate * params_grad
MBCG(Mini-Batch Gradient Descent)
for i in range ( nb_epochs ):
np.random.shuffle(data)
for batch in get_batches ( data , batch_size =50):
params_grad = evaluate_gradient ( loss_function , batch , params )
params = params - learning_rate * params_grad
上一篇:JS基础 - 变量 数组
下一篇:图像的数组表示