Algorithm(4th) 1.5 union-find算法
2021-05-07 01:29
标签:随机 include void 查找 复杂 ret cto 等价 get 问题输入是一对整数对,每个整数都代表一个对象,一对整数”p,q“表示 ”p与q相连“(具有自反性,传递性,对称性,被归到一个等价类里),要求编写程序来筛除在输入时就已经在一个等价类里的整数对。这个算法可以在计算机网络连结方面发挥作用:每个整数相当于计算机,整数对相当于网络间的连结,我们的程序可以判断为了使p,q两个计算机连结,需不需要添加一个新的线路。 我们可以通过一个“概念上”的森林来实现我们的程序。我们把union-find算法打包成一个类,在其中设置一个名为id的数组用来存放每个节点的下一个连结对象,这样可以通过接受一个数组的秩来不断访问它所连结的下一个对象,直至到一个秩和所存储对象节点号相同的节点(根节点)。而比较两个节点的根节点就可以判断他们是否连在同一个根节点上,进而判断出两个节点是否已经连结。 如果判断两个节点没有连结到一个根节点,我们就对他们的根节点进行连结。这时就会产生一个问题:p去连q还是q去连p。这里我们采用加权的算法:引入一个数组sz(size)来记录每个节点作为根节点时树中的节点数,把它作为节点的权值。每次进行根节点连结时,我们总是把权值小的根节点连结到权值大的根节点上。这样的好处是可以极大地降低树的高度的增加速度(最大程度降速的方式是把树高度作为权值的加权连结,但经过路径压缩后,这种方式变得没有必要),从而降低查找根节点时的时间量级。在最坏的情况下,要连结的树的大小总是相等的,且都是2的幂,则把所有的N个节点合成一个树,这个树的高度是底数为2的N的对数。 find采用递归压缩路径。在不改变根节点的情况下,令被查找过的节点指向其根节点,从而降低被查找过的节点的深度,进而降低再次查找时的时间复杂度。 Algorithm(4th) 1.5 union-find算法 标签:随机 include void 查找 复杂 ret cto 等价 get 原文地址:https://www.cnblogs.com/lda-ovo/p/14726409.html问题描述
具体思想
1.根节点判断
2.加权连结
致使查找要检索的高度也达到O(logN)。
PS:本图取自Algorithm(4th)中译版P146(原版P229)实现代码
#include
下一篇:c++简单随机数
文章标题:Algorithm(4th) 1.5 union-find算法
文章链接:http://soscw.com/essay/83468.html