SM3哈希算法

2021-05-07 19:27

阅读:531

标签:amp   ase   container   class   bit   方式   整数   href   函数   

SM3哈希算法


目录
  • SM3哈希算法
    • 简要说明
    • 算法流程
      • 位填充
      • 计算过程
    • 常量与函数定义
    • 参考资料

简要说明

消息长度(bits) 块大小(bits) 单词长度(bits) 消息摘要长度(bits)
SM3 \(\lt 2^{64}\) 512 32 256

算法流程

位填充

记有消息\(M\)(位长度为\(l\)), 首先在消息尾补一个比特位0b1, 然后补\(k\)个比特位0b0, \(k\)为满足\(l+1+k\equiv 448 \mod 512\)的最小非负整数. 最后, 将\(l\)转为64位长整数, 填充到消息最后;

计算过程

将位填充后的消息\(M\)按位长度512划分为块\(M^{(1)}, M^{(2)}, \dots, M^{(n)}, n = len(M)/512\), 将块\(M^{(i)}\)按位长度32划分为单词\(M_0^{(i)}, M_1^{(i)}, \dots, M_16^{(i)}\);

\[\begin{aligned} & H_0^0,H_1^0,H_2^0,H_3^0,H_4^0,H_5^0,H_6^0,H_7^0=IV[0],IV[1],IV[2],IV[3],IV[4],IV[5],IV[6],IV[7] \& for\ i\ in\ 0..n \& \quad for\ j\ in\ 0..64 \& \quad \quad if\ j\lt 16 \& \quad \quad \quad W_j = M_j^{(i)}\& \quad \quad else \& \quad \quad \quad W_j = P_1(W_{j-16}\oplus W_{j-9}\oplus (W_{j-3} \lll 15))\oplus (W_{j-13} \lll 7)\oplus W_{j-6}\& \quad \quad end \& \quad end\& \quad \quad \& \quad a,b,c,d,e,f,g,h = H_0^i,H_1^i,H_2^i,H_3^i,H_4^i,H_5^i,H_6^i,H_7^i\& \quad for\ j\ in\ 0..64 \& \quad \quad W_j^{‘} = W_j \oplus W_{j+4}\& \quad \quad s1 = ((a\lll 12)+e+T_j\lll j)\lll 7\& \quad \quad s2 = s1 \oplus (a\lll 12)\& \quad \quad t1 = FF_j(a,b,c)+d+s2+W_j^{‘} \& \quad \quad t2 = GG_j(e,f,g)+h+s1+W_j \& \quad \quad d=c; c=b\lll 9; b=a; a=t1;h=g;g=f\lll19;f=e;e=P_0(t2)\& \quad \quad H_0^i,H_1^i,H_2^i,H_3^i,H_4^i,H_5^i,H_6^i,H_7^i=a,b,c,d,e,f,g,h\& \quad end\& H = [H_0^i,H_1^i,H_2^i,H_3^i,H_4^i,H_5^i,H_6^i,H_7^i]\& end \\end{aligned} \]

常量与函数定义

说明:

  • 算法中涉及的多字节表示方式皆是大端序;
  • \(X \lll b\): 表示\(X\)循环左移\(b\)位;
/// 哈希初始值
const IV: [u32;8] = [0x7380166f, 0x4914b2b9, 0x172442d7, 0xda8a0600, 0xa96f30bc, 0x163138aa, 0xe38dee4d, 0xb0fb0e4e];

\[T_j = \begin{cases} 0x79cc4519 \quad if\quad 0 \le j \lt 16 \0x7a879d8a \quad if\quad 16 \le j \lt 64 \end{cases} \]

\[FF_j(X,Y,Z) = \begin{cases} X\oplus Y\oplus Z \quad if\quad 0 \le j \lt 16 \(X\&Y)\oplus(X\&Z)\oplus(Y\&Z) \quad if\quad 16 \le j \lt 64 \end{cases} \]

\[GG_j(X,Y,Z) = \begin{cases} X\oplus Y\oplus Z \quad if\quad 0 \le j \lt 16 \(X\&Y)\oplus((~X)\&Z) \quad if\quad 16 \le j \lt 64 \end{cases} \]

\[P_0(X) = X\oplus (X\lll 9)\oplus (X\lll 17) \]

\[P_1(X)= X\oplus (X\lll 15)\oplus (X\lll 23) \]

参考资料

  • SM3密码杂凑算法, 国家密码管理局, 2010/2;

SM3哈希算法

标签:amp   ase   container   class   bit   方式   整数   href   函数   

原文地址:https://www.cnblogs.com/mengsuenyan/p/13183543.html


评论


亲,登录后才可以留言!