Java多线程

2021-05-28 15:00

阅读:521

标签:函数   提高   cache   执行   flag   lte   阻塞队列   ima   super   

目录

 

Java多线程

一、创建线程和启动

  (1)继承Thread类创建线程类

(2)实现Runnable接口创建线程类

(3)通过Callable和Future创建线程

二、线程的生命周期

三、线程管理

1、线程睡眠——sleep

2、线程让步——yield

3、线程合并——join

4、设置线程的优先级

5、后台(守护)线程

6、正确结束线程

四、线程同步

五、线程通信

1、借助于Object类的wait()、notify()和notifyAll()实现通信

2、使用Condition控制线程通信

3、使用阻塞队列(BlockingQueue)控制线程通信

六、线程池

七、死锁

八、线程相关类

ThreadLocal


Java多线程

多线程的优势有:

  1. 进程之间不能共享数据,线程可以;
  2. 系统创建进程需要为该进程重新分配系统资源,故创建线程代价比较小;
  3.  Java语言内置了多线程功能支持,简化了java多线程编程。

一、创建线程和启动

  (1)继承Thread类创建线程类

通过继承Thread类创建线程类的具体步骤和具体代码如下:

  •   定义一个继承Thread类的子类,并重写该类的run()方法;
  •    创建Thread子类的实例,即创建了线程对象;
  •    调用该线程对象的start()方法启动线程。
class SomeThead extends Thraad   { 
    public void run()   { 
     //do something here  
    }  
 } 
 
public static void main(String[] args){
 SomeThread oneThread = new SomeThread();   
  步骤3:启动线程:   
 oneThread.start(); 
}

 

技术图片

(2)实现Runnable接口创建线程类

通过实现Runnable接口创建线程类的具体步骤和具体代码如下:

  •    定义Runnable接口的实现类,并重写该接口的run()方法;
  •    创建Runnable实现类的实例,并以此实例作为Thread的target对象,即该Thread对象才是真正的线程对象。
class SomeRunnable implements Runnable   { 
  public void run()   { 
  //do something here  
  }  
} 
Runnable oneRunnable = new SomeRunnable();   
Thread oneThread = new Thread(oneRunnable);   
oneThread.start();

 

技术图片

(3)通过Callable和Future创建线程

通过Callable和Future创建线程的具体步骤和具体代码如下:

  •    创建Callable接口的实现类,并实现call()方法,该call()方法将作为线程执行体,并且有返回值。
  •    创建Callable实现类的实例,使用FutureTask类来包装Callable对象,该FutureTask对象封装了该Callable对象的call()方法的返回值。
  •    使用FutureTask对象作为Thread对象的target创建并启动新线程。
  •    调用FutureTask对象的get()方法来获得子线程执行结束后的返回值其中,Callable接口(也只有一个方法)定义如下: 
public interface Callable   { 
  V call() throws Exception;  
 } 
  步骤1:创建实现Callable接口的类SomeCallable();   
  步骤2:创建一个类对象: 
      Callable oneCallable = new SomeCallable(); 
  步骤3:由Callable创建一个FutureTask对象:   
    FutureTask oneTask = new FutureTask(oneCallable); 
  注释: FutureTask是一个包装器,它通过接受Callable来创建,它同时实现了 Future和Runnable接口。 
  步骤4:由FutureTask创建一个Thread对象:   
    Thread oneThread = new Thread(oneTask);   
  步骤5:启动线程:  
    oneThread.start();

 

技术图片

二、线程的生命周期

技术图片技术图片?

1、新建状态

       用new关键字和Thread类或其子类建立一个线程对象后,该线程对象就处于新生状态。处于新生状态的线程有自己的内存空间,通过调用start方法进入就绪状态(runnable)。

注意:不能对已经启动的线程再次调用start()方法,否则会出现Java.lang.IllegalThreadStateException异常。

2、就绪状态

       处于就绪状态的线程已经具备了运行条件,但还没有分配到CPU,处于线程就绪队列(尽管是采用队列形式,事实上,把它称为可运行池而不是可运行队列。因为cpu的调度不一定是按照先进先出的顺序来调度的),等待系统为其分配CPU。等待状态并不是执行状态,当系统选定一个等待执行的Thread对象后,它就会从等待执行状态进入执行状态,系统挑选的动作称之为“cpu调度”。一旦获得CPU,线程就进入运行状态并自动调用自己的run方法。

3、运行状态

      处于运行状态的线程最为复杂,它可以变为阻塞状态、就绪状态和死亡状态。

处于就绪状态的线程,如果获得了cpu的调度,就会从就绪状态变为运行状态,执行run()方法中的任务。如果该线程失去了cpu资源,就会又从运行状态变为就绪状态。重新等待系统分配资源。也可以对在运行状态的线程调用yield()方法,它就会让出cpu资源,再次变为就绪状态。

注: 当发生如下情况是,线程会从运行状态变为阻塞状态:

     ①、线程调用sleep方法主动放弃所占用的系统资源

     ②、线程调用一个阻塞式IO方法,在该方法返回之前,该线程被阻塞

     ③、线程试图获得一个同步监视器,但更改同步监视器正被其他线程所持有

     ④、线程在等待某个通知(notify)

     ⑤、程序调用了线程的suspend方法将线程挂起。不过该方法容易导致死锁,所以程序应该尽量避免使用该方法。

当线程的run()方法执行完,或者被强制性地终止,例如出现异常,或者调用了stop()、desyory()方法等等,就会从运行状态转变为死亡状态。

4、阻塞状态

      处于运行状态的线程在某些情况下,如执行了sleep(睡眠)方法,或等待I/O设备等资源,将让出CPU并暂时停止自己的运行,进入阻塞状态。 

在阻塞状态的线程不能进入就绪队列。只有当引起阻塞的原因消除时,如睡眠时间已到,或等待的I/O设备空闲下来,线程便转入就绪状态,重新到就绪队列中排队等待,被系统选中后从原来停止的位置开始继续运行。有三种方法可以暂停Threads执行:

5、死亡状态

      当线程的run()方法执行完,或者被强制性地终止,就认为它死去。这个线程对象也许是活的,但是,它已经不是一个单独执行的线程。线程一旦死亡,就不能复生。 如果在一个死去的线程上调用start()方法,会抛出java.lang.IllegalThreadStateException异常。

三、线程管理

     Java提供了一些便捷的方法用于会线程状态的控制。具体如下:

1、线程睡眠——sleep

      如果我们需要让当前正在执行的线程暂停一段时间,并进入阻塞状态,则可以通过调用Thread的sleep方法。

   (1)sleep是静态方法,最好不要用Thread的实例对象调用它,因为它睡眠的始终是当前正在运行的线程,而不是调用它的线程对象,它只对正在运行状态的线程对象有效。如下面的例子:

public class Test1 {  
    public static void main(String[] args) throws InterruptedException {  
        System.out.println(Thread.currentThread().getName());  
        MyThread myThread=new MyThread();  
        myThread.start();  
        myThread.sleep(1000);//这里sleep的就是main线程,而非myThread线程  
        Thread.sleep(10);  
        for(int i=0;i){  
            System.out.println("main"+i);  
        }  
    }  
}

 

技术图片

(2)Java线程调度是Java多线程的核心,只有良好的调度,才能充分发挥系统的性能,提高程序的执行效率。但是不管程序员怎么编写调度,只能最大限度的影响线程执行的次序,而不能做到精准控制。因为使用sleep方法之后,线程是进入阻塞状态的,只有当睡眠的时间结束,才会重新进入到就绪状态,而就绪状态进入到运行状态,是由系统控制的,我们不可能精准的去干涉它,所以如果调用Thread.sleep(1000)使得线程睡眠1秒,可能结果会大于1秒。

2、线程让步——yield

      yield()方法和sleep()方法有点相似,它也是Thread类提供的一个静态的方法,它也可以让当前正在执行的线程暂停,让出cpu资源给其他的线程。但是和sleep()方法不同的是,它不会进入到阻塞状态,而是进入到就绪状态。yield()方法只是让当前线程暂停一下,重新进入就绪的线程池中,让系统的线程调度器重新调度器重新调度一次,完全可能出现这样的情况:当某个线程调用yield()方法之后,线程调度器又将其调度出来重新进入到运行状态执行。

实际上,当某个线程调用了yield()方法暂停之后,优先级与当前线程相同,或者优先级比当前线程更高的就绪状态的线程更有可能获得执行的机会,当然,只是有可能,因为我们不可能精确的干涉cpu调度线程。用法如下:

public class Test1 {  
    public static void main(String[] args) throws InterruptedException {  
        new MyThread("低级", 1).start();  
        new MyThread("中级", 5).start();  
        new MyThread("高级", 10).start();  
    }  
}  
  
class MyThread extends Thread {  
    public MyThread(String name, int pro) {  
        super(name);// 设置线程的名称  
        this.setPriority(pro);// 设置优先级  
    }  
  
    @Override  
    public void run() {  
        for (int i = 0; i ) {  
            System.out.println(this.getName() + "线程第" + i + "次执行!");  
            if (i % 5 == 0)  
                Thread.yield();  
        }  
    }  
}

 

技术图片

注:关于sleep()方法和yield()方的区别如下:

  1. sleep方法暂停当前线程后,会进入阻塞状态,只有当睡眠时间到了,才会转入就绪状态。而yield方法调用后 ,是直接进入就绪状态,所以有可能刚进入就绪状态,又被调度到运行状态。
  2. sleep方法声明抛出了InterruptedException,所以调用sleep方法的时候要捕获该异常,或者显示声明抛出该异常。而yield方法则没有声明抛出任务异常。
  3. sleep方法比yield方法有更好的可移植性,通常不要依靠yield方法来控制并发线程的执行。

3、线程合并——join

线程的合并的含义就是将几个并行线程的线程合并为一个单线程执行,应用场景是当一个线程必须等待另一个线程执行完毕才能执行时,Thread类提供了join方法来完成这个功能,它不是静态方法。
它有3个重载的方法:

void join()      
     当前线程等该加入该线程后面,等待该线程终止。    
void join(long millis)  
     当前线程等待该线程终止的时间最长为 millis 毫秒。 如果在millis时间内,该线程没有执行完,那么当前线程进入就绪状态,重新等待cpu调度  
void join(long millis,int nanos)   
     等待该线程终止的时间最长为 millis 毫秒 + nanos 纳秒。如果在millis时间内,该线程没有执行完,那么当前线程进入就绪状态,重新等待cpu调度 

 

技术图片

4、设置线程的优先级

     每个线程执行时都有一个优先级的属性,优先级高的线程可以获得较多的执行机会,而优先级低的线程则获得较少的执行机会。与线程休眠类似,线程的优先级仍然无法保障线程的执行次序。只不过,优先级高的线程获取CPU资源的概率较大,优先级低的也并非没机会执行。

每个线程默认的优先级都与创建它的父线程具有相同的优先级,在默认情况下,main线程具有普通优先级。

Thread类提供了setPriority(int newPriority)和getPriority()方法来设置和返回一个指定线程的优先级,其中setPriority方法的参数是一个整数,范围是1~·0之间,也可以使用Thread类提供的三个静态常量:

void join()      
     当前线程等该加入该线程后面,等待该线程终止。    
void join(long millis)  
     当前线程等待该线程终止的时间最长为 millis 毫秒。 如果在millis时间内,该线程没有执行完,那么当前线程进入就绪状态,重新等待cpu调度  
void join(long millis,int nanos)   
     等待该线程终止的时间最长为 millis 毫秒 + nanos 纳秒。如果在millis时间内,该线程没有执行完,那么当前线程进入就绪状态,重新等待cpu调度 

 

技术图片

5、后台(守护)线程

  • 守护线程使用的情况较少,JVM的垃圾回收、内存管理等线程都是守护线程。还调用线程对象的方法setDaemon(true),则可以将其设置为守护线程。
  • 守护线程的用途为:守护线程通常用于执行一些后台作业,如自动保存等功能。
  •  Java的垃圾回收也是一个守护线程。守护线的好处就是你不需要关心它的结束问题。

setDaemon方法的详细说明:

public final void setDaemon(boolean on)        将该线程标记为守护线程或用户线程。当正在运行的线程都是守护线程时,Java 虚拟机退出。    
         该方法必须在启动线程前调用。 该方法首先调用该线程的 checkAccess 方法,且不带任何参数。这可能抛出 SecurityException(在当前线程中)。   
  参数:
     on - 如果为 true,则将该线程标记为守护线程。    
  抛出:    
    IllegalThreadStateException - 如果该线程处于活动状态。    
    SecurityException - 如果当前线程无法修改该线程。

 

技术图片

6、正确结束线程

Thread.stop()、Thread.suspend、Thread.resume、Runtime.runFinalizersOnExit这些终止线程运行的方法已经被废弃了,使用它们是极端不安全的,安全有效的结束一个线程,可以使用下面的方法:

  •    正常执行完run方法,然后结束掉;
  •    控制循环条件和判断条件的标识符来结束掉线程。
class MyThread extends Thread {  
    int i=0;  
    boolean next=true;  
    @Override  
    public void run() {  
        while (next) {  
            if(i==10)  
                next=false;  
            i++;  
            System.out.println(i);  
        }  
    }  
}

 

技术图片

四、线程同步

     java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查),将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用,从而保证了该变量的唯一性和准确性。

1、同步方法     

      即有synchronized关键字修饰的方法。由于java的每个对象都有一个内置锁,当用此关键字修饰方法时,内置锁会保护整个方法。在调用该方法前,需要获得内置锁,否则就处于阻塞状态。

public synchronized void save(){}

 

技术图片

2、同步代码块     

  即有synchronized关键字修饰的语句块。被该关键字修饰的语句块会自动被加上内置锁,从而实现同步。

同步是一种高开销的操作,因此应该尽量减少同步的内容。通常没有必要同步整个方法,使用synchronized代码块同步关键代码即可

 3、使用特殊域变量(volatile)实现线程同步      

  •    volatile关键字为域变量的访问提供了一种免锁机制;
  •    使用volatile修饰域相当于告诉虚拟机该域可能会被其他线程更新;
  •    因此每次使用该域就要重新计算,而不是使用寄存器中的值;
  •    volatile不会提供任何原子操作,它也不能用来修饰final类型的变量。

4、使用重入锁(Lock)实现线程同步

      在JavaSE5.0中新增了一个java.util.concurrent包来支持同步。ReentrantLock类是可重入、互斥、实现了Lock接口的锁,它与使用synchronized方法和快具有相同的基本行为和语义,并且扩展了其能力。ReenreantLock类的常用方法有:

 ReentrantLock() : 创建一个ReentrantLock实例         
 lock() : 获得锁        
 unlock() : 释放锁

 

技术图片

五、线程通信

1、借助于Object类的wait()、notify()和notifyAll()实现通信

 线程执行wait()后,就放弃了运行资格,处于冻结状态;线程运行时,内存中会建立一个线程池,冻结状态的线程都存在于线程池中,notify()执行时唤醒的也是线程池中的线程,线程池中有多个线程时唤醒第一个被冻结的线程。notifyall(), 唤醒线程池中所有线程。

  1. wait(), notify(),notifyall()都用在同步里面,因为这3个函数是对持有锁的线程进行操作,而只有同步才有锁,所以要使用在同步中;
  2.  wait(),notify(),notifyall(),  在使用时必须标识它们所操作的线程持有的锁,因为等待和唤醒必须是同一锁下的线程;而锁可以是任意对象,所以这3个方法都是Object类中的方法。

多个消费者生产者例子如下:

class Resource{  
        private String name;  
        private int count=1;  
        private boolean flag=false;  
        public synchronized void set(String name){  
            while(flag) /*原先是if,现在改成while,这样生产者线程从冻结状态醒来时,还会再判断flag.*/  
                try{wait();}catch(Exception e){}  
            this.name=name+"---"+count++;  
            System.out.println(Thread.currentThread().getName()+"...生产者..."+this.name);  
            flag=true;  
            this.notifyAll();/*原先是notity(), 现在改成notifyAll(),这样生产者线程生产完一个商品后可以将等待中的消费者线程唤醒,否则只将上面改成while后,可能出现所有生产者和消费者都在wait()的情况。*/  
        }  
        public synchronized void out(){  
            while(!flag) /*原先是if,现在改成while,这样消费者线程从冻结状态醒来时,还会再判断flag.*/  
                try{wait();}catch(Exception e){}  
            System.out.println(Thread.currentThread().getName()+"...消费者..."+this.name);  
            flag=false;  
            this.notifyAll(); /*原先是notity(), 现在改成notifyAll(),这样消费者线程消费完一个商品后可以将等待中的生产者线程唤醒,否则只将上面改成while后,可能出现所有生产者和消费者都在wait()的情况。*/  
        }  
    }  
    public class ProducerConsumerDemo{  
        public static void main(String[] args){  
            Resource r=new Resource();  
            Producer pro=new Producer(r);  
            Consumer con=new Consumer(r);  
            Thread t1=new Thread(pro);  
            Thread t2=new Thread(con);  
            Thread t3=new Thread(pro);  
            Thread t4=new Thread(con);  
            t1.start();  
            t2.start();  
            t3.start();  
            t4.start();  
        }  
    }

 

技术图片

2、使用Condition控制线程通信

将同步synchronized替换为显式的Lock操作;

将Object类中的wait(), notify(),notifyAll()替换成了Condition对象,该对象可以通过Lock锁对象获取;

一个Lock对象上可以绑定多个Condition对象,这样实现了本方线程只唤醒对方线程,而jdk1.5之前,一个同步只能有一个锁,不同的同步只能用锁来区分,且锁嵌套时容易死锁。

class Resource{  
        private String name;  
        private int count=1;  
        private boolean flag=false;  
        private Lock lock = new ReentrantLock();/*Lock是一个接口,ReentrantLock是该接口的一个直接子类。*/  
        private Condition condition_pro=lock.newCondition(); /*创建代表生产者方面的Condition对象*/  
        private Condition condition_con=lock.newCondition(); /*使用同一个锁,创建代表消费者方面的Condition对象*/  
          
        public void set(String name){  
            lock.lock();//锁住此语句与lock.unlock()之间的代码  
            try{  
                while(flag)  
                    condition_pro.await(); //生产者线程在conndition_pro对象上等待  
                this.name=name+"---"+count++;  
                System.out.println(Thread.currentThread().getName()+"...生产者..."+this.name);  
                flag=true;  
                 condition_con.signalAll();  
            }  
            finally{  
                lock.unlock(); //unlock()要放在finally块中。  
            }  
        }  
        public void out(){  
            lock.lock(); //锁住此语句与lock.unlock()之间的代码  
            try{  
                while(!flag)  
                    condition_con.await(); //消费者线程在conndition_con对象上等待  
            System.out.println(Thread.currentThread().getName()+"...消费者..."+this.name);  
            flag=false;  
            condition_pro.signqlAll(); /*唤醒所有在condition_pro对象下等待的线程,也就是唤醒所有生产者线程*/  
            }  
            finally{  
                lock.unlock();  
            }  
        }  
    }

 

技术图片

3、使用阻塞队列(BlockingQueue)控制线程通信

     BlockingQueue是一个接口,也是Queue的子接口。BlockingQueue具有一个特征:当生产者线程试图向BlockingQueue中放入元素时,如果该队列已满,则线程被阻塞;但消费者线程试图从BlockingQueue中取出元素时,如果队列已空,则该线程阻塞。程序的两个线程通过交替向BlockingQueue中放入元素、取出元素,即可很好地控制线程的通信。

BlockingQueue提供如下两个支持阻塞的方法:

  •  put(E e):尝试把Eu元素放如BlockingQueue中,如果该队列的元素已满,则阻塞该线程。
  • take():尝试从BlockingQueue的头部取出元素,如果该队列的元素已空,则阻塞该线程。

BlockingQueue继承了Queue接口,当然也可以使用Queue接口中的方法,这些方法归纳起来可以分为如下三组:

  • 在队列尾部插入元素,包括add(E e)、offer(E e)、put(E e)方法,当该队列已满时,这三个方法分别会抛出异常、返回false、阻塞队列。
  • 在队列头部删除并返回删除的元素。包括remove()、poll()、和take()方法,当该队列已空时,这三个方法分别会抛出异常、返回false、阻塞队列。
  • 在队列头部取出但不删除元素。包括element()和peek()方法,当队列已空时,这两个方法分别抛出异常、返回false。

BlockingQueue接口包含如下5个实现类:

ArrayBlockingQueue :基于数组实现的BlockingQueue队列。

LinkedBlockingQueue:基于链表实现的BlockingQueue队列。

PriorityBlockingQueue:它并不是保准的阻塞队列,该队列调用remove()、poll()、take()等方法提取出元素时,并不是取出队列中存在时间最长的元素,而是队列中最小的元素。                       它判断元素的大小即可根据元素(实现Comparable接口)的本身大小来自然排序,也可使用Comparator进行定制排序。

SynchronousQueue:同步队列。对该队列的存、取操作必须交替进行。

DelayQueue:它是一个特殊的BlockingQueue,底层基于PriorityBlockingQueue实现,不过,DelayQueue要求集合元素都实现Delay接口(该接口里只有一个long getDelay()方法),            DelayQueue根据集合元素的getDalay()方法的返回值进行排序。
点击并拖拽以移动

 

六、线程池

合理利用线程池能够带来三个好处。

  1. 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  2. 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
  3. 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

 使用Executors执行多线程任务的步骤如下:

  • 调用Executors类的静态工厂方法创建一个ExecutorService对象,该对象代表一个线程池;
  • 创建Runnable实现类或Callable实现类的实例,作为线程执行任务;
  • 调用ExecutorService对象的submit()方法来提交Runnable实例或Callable实例;
  •  当不想提交任务时,调用ExecutorService对象的shutdown()方法来关闭线程池。     

(1)使用Executors的静态工厂类创建线程池的方法如下:

newFixedThreadPool() : 
 作用:该方法返回一个固定线程数量的线程池,该线程池中的线程数量始终不变,即不会再创建新的线程,也不会销毁已经创建好的线程,自始自终都是那几个固定的线程在工作,所以该线程池可以控制线程的最大并发数。 
newCachedThreadPool() : 
 作用:该方法返回一个可以根据实际情况调整线程池中线程的数量的线程池。即该线程池中的线程数量不确定,是根据实际情况动态调整的。 
newSingleThreadExecutor() : 

作用:该方法返回一个只有一个线程的线程池,多余的任务会保存到一个任务队列中,等待这一个线程空闲,当这个线程空闲了再按FIFO方式顺序执行任务队列中的任务。
newScheduledThreadPool() : 
 作用:该方法返回一个可以控制线程池内线程定时或周期性执行某任务的线程池。
newSingleThreadScheduledExecutor() : 
 作用:该方法返回一个可以控制线程池内线程定时或周期性执行某任务的线程池。只不过和上面的区别是该线程池大小为1,而上面的可以指定线程池的大小。

(2) ExecutorService有如下几个执行方法:

- execute(Runnable)
- submit(Runnable)
- submit(Callable)
- invokeAny(...)
- invokeAll(...)

 

技术图片

(3) ExecutorService关闭方法

     关闭ExecutorService中执行的线程,我们可以调用ExecutorService.shutdown()方法。在调用shutdown()方法之后,ExecutorService不会立即关闭,但是它不再接收新的任务,直到当前所有线程执行完成才会关闭,所有在shutdown()执行之前提交的任务都会被执行。

七、死锁

 产生死锁的四个必要条件如下。当下边的四个条件都满足时即产生死锁,即任意一个条件不满足既不会产生死锁。

(1)死锁的四个必要条件

  • 互斥条件:资源不能被共享,只能被同一个进程使用
  • 请求与保持条件:已经得到资源的进程可以申请新的资源
  • 非剥夺条件:已经分配的资源不能从相应的进程中被强制剥夺
  • 循环等待条件:系统中若干进程组成环路,该环路中每个进程都在等待相邻进程占用的资源

(2)处理死锁的方法

  • 忽略该问题,也即鸵鸟算法。当发生了什么问题时,不管他,直接跳过,无视它;
  • 检测死锁并恢复;
  • 资源进行动态分配;
  • 破除上面的四种死锁条件之一。

八、线程相关类

ThreadLocal

ThreadLocal它并不是一个线程,而是一个可以在每个线程中存储数据的数据存储类,使用这个工具类可以简化多线程编程时的并发访问,很简洁的隔离多线程程序的竞争资源。

在ThreadLocal中存在着两个很重要的方法,get()和set()方法,一个读取一个设置。

/**
    * Returns the value of this variable for the current thread. If an entry
    * doesn‘t yet exist for this variable on this thread, this method will
    * create an entry, populating the value with the result of
    * {@link #initialValue()}.
    *
    * @return the current value of the variable for the calling thread.
    */
    @SuppressWarnings("unchecked")
    public T get() {
       // Optimized for the fast path.
       Thread currentThread = Thread.currentThread();
       Values values = values(currentThread);
       if (values != null) {
            Object[] table = values.table;
            int index = hash & values.mask;
            if (this.reference == table[index]) {
              return (T) table[index + 1];
             }
        } else {
        values = initializeValues(currentThread);
      }
      return (T) values.getAfterMiss(this);
    }
    /**
    * Sets the value of this variable for the current thread. If set to
    * {@code null}, the value will be set to null and the underlying entry will
    * still be present.
    *
    * @param value the new value of the variable for the caller thread.
    */
    public void set(T value) {
         Thread currentThread = Thread.currentThread();
       Values values = values(currentThread);
       if (values == null) {
          values = initializeValues(currentThread);
       }
       values.put(this, value);
    }

 

技术图片

get方法会返回一个当前线程的变量值,如果数组不存在就会创建一个新的。对于“当前线程”和“数组”,数组对于每个线程来说都是不同的 values.table。而values是通过当前线程获取到的一个Values对象,因此这个数组是每个线程唯一的,不能共用。

若多个线程之间需要共享资源,以达到线程间的通信时,就使用同步机制;若仅仅需要隔离多线程之间的关系资源,则可以使用ThreadLocal。

 

Java多线程

标签:函数   提高   cache   执行   flag   lte   阻塞队列   ima   super   

原文地址:https://www.cnblogs.com/koudada/p/14783945.html


评论


亲,登录后才可以留言!