Python for Data Science - Concatenating and transforming data
2021-06-11 16:02
标签:dde ati taf apt imp pre ica from datatable Python for Data Science - Concatenating and transforming data 标签:dde ati taf apt imp pre ica from datatable 原文地址:https://www.cnblogs.com/keepmoving1113/p/14223109.htmlChapter 2 - Data Preparation Basics
Segment 4 - Concatenating and transforming data
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
DF_obj = pd.DataFrame(np.arange(36).reshape(6,6))
DF_obj
0
1
2
3
4
5
0
0
1
2
3
4
5
1
6
7
8
9
10
11
2
12
13
14
15
16
17
3
18
19
20
21
22
23
4
24
25
26
27
28
29
5
30
31
32
33
34
35
DF_obj_2 = pd.DataFrame(np.arange(15).reshape(5,3))
DF_obj_2
0
1
2
0
0
1
2
1
3
4
5
2
6
7
8
3
9
10
11
4
12
13
14
Concatenating data
pd.concat([DF_obj,DF_obj_2],axis=1)
0
1
2
3
4
5
0
1
2
0
0
1
2
3
4
5
0.0
1.0
2.0
1
6
7
8
9
10
11
3.0
4.0
5.0
2
12
13
14
15
16
17
6.0
7.0
8.0
3
18
19
20
21
22
23
9.0
10.0
11.0
4
24
25
26
27
28
29
12.0
13.0
14.0
5
30
31
32
33
34
35
NaN
NaN
NaN
pd.concat([DF_obj,DF_obj_2])
0
1
2
3
4
5
0
0
1
2
3.0
4.0
5.0
1
6
7
8
9.0
10.0
11.0
2
12
13
14
15.0
16.0
17.0
3
18
19
20
21.0
22.0
23.0
4
24
25
26
27.0
28.0
29.0
5
30
31
32
33.0
34.0
35.0
0
0
1
2
NaN
NaN
NaN
1
3
4
5
NaN
NaN
NaN
2
6
7
8
NaN
NaN
NaN
3
9
10
11
NaN
NaN
NaN
4
12
13
14
NaN
NaN
NaN
Transforming data
Dropping data
DF_obj.drop([0,2])
0
1
2
3
4
5
1
6
7
8
9
10
11
3
18
19
20
21
22
23
4
24
25
26
27
28
29
5
30
31
32
33
34
35
DF_obj.drop([0,2],axis=1)
1
3
4
5
0
1
3
4
5
1
7
9
10
11
2
13
15
16
17
3
19
21
22
23
4
25
27
28
29
5
31
33
34
35
Adding data
series_obj = Series(np.arange(6))
series_obj.name = "added_variable"
series_obj
0 0
1 1
2 2
3 3
4 4
5 5
Name: added_variable, dtype: int64
variable_added = DataFrame.join(DF_obj,series_obj)
variable_added
0
1
2
3
4
5
added_variable
0
0
1
2
3
4
5
0
1
6
7
8
9
10
11
1
2
12
13
14
15
16
17
2
3
18
19
20
21
22
23
3
4
24
25
26
27
28
29
4
5
30
31
32
33
34
35
5
added_datatable = variable_added.append(variable_added, ignore_index=False)
added_datatable
0
1
2
3
4
5
added_variable
0
0
1
2
3
4
5
0
1
6
7
8
9
10
11
1
2
12
13
14
15
16
17
2
3
18
19
20
21
22
23
3
4
24
25
26
27
28
29
4
5
30
31
32
33
34
35
5
0
0
1
2
3
4
5
0
1
6
7
8
9
10
11
1
2
12
13
14
15
16
17
2
3
18
19
20
21
22
23
3
4
24
25
26
27
28
29
4
5
30
31
32
33
34
35
5
added_datatable = variable_added.append(variable_added, ignore_index=True)
added_datatable
0
1
2
3
4
5
added_variable
0
0
1
2
3
4
5
0
1
6
7
8
9
10
11
1
2
12
13
14
15
16
17
2
3
18
19
20
21
22
23
3
4
24
25
26
27
28
29
4
5
30
31
32
33
34
35
5
6
0
1
2
3
4
5
0
7
6
7
8
9
10
11
1
8
12
13
14
15
16
17
2
9
18
19
20
21
22
23
3
10
24
25
26
27
28
29
4
11
30
31
32
33
34
35
5
Sorting data
DF_sorted = DF_obj.sort_values(by=(5),ascending=[False])
DF_sorted
0
1
2
3
4
5
5
30
31
32
33
34
35
4
24
25
26
27
28
29
3
18
19
20
21
22
23
2
12
13
14
15
16
17
1
6
7
8
9
10
11
0
0
1
2
3
4
5
文章标题:Python for Data Science - Concatenating and transforming data
文章链接:http://soscw.com/essay/93634.html