661. Image Smoother@python
2021-06-16 06:04
标签:题意 pre solution 空间 present rip str return 思路 Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can. Example 1: Note: 原题地址: Image Smoother 难度: Easy 题意: 平滑图片, 每一个点值为其四周(包含自身)的平均值 思路: 一个二维数组, 按照题意,点可以分为三类 (1)四个角的点, 其周围有4个点(包含自身) (2)二维数组最外层除了四个角的点,其周围有6个点(包含自身) (3)其他的点(内层点),其周围有9个点(包含自身) 直接暴力解决,遍历数组 代码: 时间复杂度: O(mn) 空间复杂度: O(1) 661. Image Smoother@python 标签:题意 pre solution 空间 present rip str return 思路 原文地址:https://www.cnblogs.com/chimpan/p/9727238.htmlInput:
[[1,1,1],
[1,0,1],
[1,1,1]]
Output:
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
Explanation:
For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0
class Solution(object):
def imageSmoother(self, M):
"""
:type M: List[List[int]]
:rtype: List[List[int]]
"""
m = len(M)
n = len(M[0])
res = [[0] * n for i in range(m)]
if m and n :
return M
if m == 1 and n > 1:
res[0][0] = (M[0][0] + M[0][1]) // 2
res[0][-1] = (M[0][-1] + M[0][-2]) // 2
for j in range(1, n-1):
res[0][j] = sum(M[0][j-1: j+2]) // 3
return res
if n == 1 and m > 1:
res[0][0] = (M[0][0] + M[1][0]) // 2
res[-1][0] = (M[-1][0] + M[-2][0]) // 2
for i in range(1, m-1):
res[i][0] = (M[i-1][0] + M[i][0] + M[i+1][0]) // 3
return res
for i in range(m):
for j in range(n):
if i == 0 and j == 0:
res[i][j] = (M[i][j] + M[i][j+1] + M[i+1][j] + M[i+1][j+1]) // 4
if i == 0 and j == n-1:
res[i][j] = (M[i][j] + M[i][j-1] + M[i+1][j] + M[i+1][j-1]) // 4
if i == m-1 and j == 0:
res[i][j] = (M[i][j] + M[i][j+1] + M[i-1][j] + M[i-1][j+1]) // 4
if i == m-1 and j == n-1:
res[i][j] = (M[i][j] + M[i][j-1] + M[i-1][j] + M[i-1][j-1]) // 4
if i == 0 and 0 :
res[i][j] = (sum(M[i][j-1: j+2]) + sum(M[i+1][j-1: j+2])) // 6
if i == m-1 and 0 :
res[i][j] = (sum(M[i][j-1: j+2]) + sum(M[i-1][j-1: j+2])) // 6
if j == 0 and 0 :
res[i][j] = (sum(M[i][j: j+2]) + sum(M[i-1][j: j+2]) + sum(M[i+1][j: j+2])) // 6
if j == n-1 and 0 :
res[i][j] = (sum(M[i][j-1: j+1]) + sum(M[i-1][j-1: j+1]) + sum(M[i+1][j-1: j+1])) // 6
if 0 and 0 :
res[i][j] = (sum(M[i][j-1: j+2]) + sum(M[i-1][j-1: j+2]) + sum(M[i+1][j-1: j+2])) // 9
return res