Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding
2021-06-18 06:06
阅读:464
Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding
深度学习思想越来越火,在今年的CVPR 2015 文章中相关文章就有20多篇,可见是很火的。近期在做关于语义切割和场景解析的内容,看到这篇文章后也是很高兴。
CN24 is a complete semantic segmentation framework using fully convolutional networks. It supports a wide variety of platforms (Linux, Mac OS X and Windows) and libraries (OpenCL, Intel MKL, AMD ACML...) while providing dependency-free reference implementations. The software is developed at the Computer Vision Group, University of Jena.
文章说能够在Windows、Mac和Linux系统上很好的执行,又能够支持OpenCL、Intel MKL , AMD ACML 来并行计算加速。看起来还真不错!
官方源代码地址:
[ CN24 ]
接下来先上实验结果:
实验环境[ubuntu 15.04]。临时没实用GPU加速
代码程序文件夹:
执行后的结果:
单张图片測试结果,左側是语义切割后的结果,右側是真实的測试图。
没实用GPU加速,果然处理一张图片还是挺慢的,耗时还是挺多的,例如以下图所看到的:
以下就是摸索代码。下一节会继续分享学习过程,谢谢!
文章来自:搜素材网的编程语言模块,转载请注明文章出处。
文章标题:Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding
文章链接:http://soscw.com/essay/95369.html
文章标题:Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding
文章链接:http://soscw.com/essay/95369.html
评论
亲,登录后才可以留言!