BP算法实例—鸢尾花的分类(Python)
2021-06-26 23:05
标签:python hang 变量 init .com random tps 输出 更新 首先了解下Iris鸢尾花数据集: Iris数据集(https://en.wikipedia.org/wiki/Iris_flower_data_set)是常用的分类实验数据集,由Fisher,1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。 该数据集包含了4个属性: Python源码: BP算法实例—鸢尾花的分类(Python) 标签:python hang 变量 init .com random tps 输出 更新 原文地址:https://www.cnblogs.com/duanhx/p/9655217.html
iris以鸢尾花的特征作为数据来源,常用在分类操作中。该数据集由3种不同类型的鸢尾花的50个样本数据构成。其中的一个种类与另外两个种类是线性可分离的,后两个种类是非线性可分离的。
Sepal.Length(花萼长度),单位是cm;
Sepal.Width(花萼宽度),单位是cm;
Petal.Length(花瓣长度),单位是cm;
Petal.Width(花瓣宽度),单位是cm;
种类:Iris Setosa(1.山鸢尾)、Iris Versicolour(2.杂色鸢尾),以及Iris Virginica(3.维吉尼亚鸢尾)。 1 from __future__ import division
2 import math
3 import random
4 import pandas as pd
5
6
7 flowerLables = {0: ‘Iris-setosa‘,
8 1: ‘Iris-versicolor‘,
9 2: ‘Iris-virginica‘}
10
11 random.seed(0)
12
13
14 # 生成区间[a, b)内的随机数
15 def rand(a, b):
16 return (b - a) * random.random() + a
17
18
19 # 生成大小 I*J 的矩阵,默认零矩阵
20 def makeMatrix(I, J, fill=0.0):
21 m = []
22 for i in range(I):
23 m.append([fill] * J)
24 return m
25
26
27 # 函数 sigmoid
28 def sigmoid(x):
29 return 1.0 / (1.0 + math.exp(-x))
30
31
32 # 函数 sigmoid 的导数
33 def dsigmoid(x):
34 return x * (1 - x)
35
36
37 class NN:
38 """ 三层反向传播神经网络 """
39
40 def __init__(self, ni, nh, no):
41 # 输入层、隐藏层、输出层的节点(数)
42 self.ni = ni + 1 # 增加一个偏差节点
43 self.nh = nh + 1
44 self.no = no
45
46 # 激活神经网络的所有节点(向量)
47 self.ai = [1.0] * self.ni
48 self.ah = [1.0] * self.nh
49 self.ao = [1.0] * self.no
50
51 # 建立权重(矩阵)
52 self.wi = makeMatrix(self.ni, self.nh)
53 self.wo = makeMatrix(self.nh, self.no)
54 # 设为随机值
55 for i in range(self.ni):
56 for j in range(self.nh):
57 self.wi[i][j] = rand(-0.2, 0.2)
58 for j in range(self.nh):
59 for k in range(self.no):
60 self.wo[j][k] = rand(-2, 2)
61
62 def update(self, inputs):
63 if len(inputs) != self.ni - 1:
64 raise ValueError(‘与输入层节点数不符!‘)
65
66 # 激活输入层
67 for i in range(self.ni - 1):
68 self.ai[i] = inputs[i]
69
70 # 激活隐藏层
71 for j in range(self.nh):
72 sum = 0.0
73 for i in range(self.ni):
74 sum = sum + self.ai[i] * self.wi[i][j]
75 self.ah[j] = sigmoid(sum)
76
77 # 激活输出层
78 for k in range(self.no):
79 sum = 0.0
80 for j in range(self.nh):
81 sum = sum + self.ah[j] * self.wo[j][k]
82 self.ao[k] = sigmoid(sum)
83
84 return self.ao[:]
85
86 def backPropagate(self, targets, lr):
87 """ 反向传播 """
88
89 # 计算输出层的误差
90 output_deltas = [0.0] * self.no
91 for k in range(self.no):
92 error = targets[k] - self.ao[k]
93 output_deltas[k] = dsigmoid(self.ao[k]) * error
94
95 # 计算隐藏层的误差
96 hidden_deltas = [0.0] * self.nh
97 for j in range(self.nh):
98 error = 0.0
99 for k in range(self.no):
100 error = error + output_deltas[k] * self.wo[j][k]
101 hidden_deltas[j] = dsigmoid(self.ah[j]) * error
102
103 # 更新输出层权重
104 for j in range(self.nh):
105 for k in range(self.no):
106 change = output_deltas[k] * self.ah[j]
107 self.wo[j][k] = self.wo[j][k] + lr * change
108
109 # 更新输入层权重
110 for i in range(self.ni):
111 for j in range(self.nh):
112 change = hidden_deltas[j] * self.ai[i]
113 self.wi[i][j] = self.wi[i][j] + lr * change
114
115 # 计算误差
116 error = 0.0
117 error += 0.5 * (targets[k] - self.ao[k]) ** 2
118 return error
119
120 def test(self, patterns):
121 count = 0
122 for p in patterns:
123 target = flowerLables[(p[1].index(1))]
124 result = self.update(p[0])
125 index = result.index(max(result))
126 print(p[0], ‘:‘, target, ‘->‘, flowerLables[index])
127 count += (target == flowerLables[index])
128 accuracy = float(count / len(patterns))
129 print(‘accuracy: %-.9f‘ % accuracy)
130
131 def weights(self):
132 print(‘输入层权重:‘)
133 for i in range(self.ni):
134 print(self.wi[i])
135 print()
136 print(‘输出层权重:‘)
137 for j in range(self.nh):
138 print(self.wo[j])
139
140 def train(self, patterns, iterations=1000, lr=0.1):
141 # lr: 学习速率(learning rate)
142 for i in range(iterations):
143 error = 0.0
144 for p in patterns:
145 inputs = p[0]
146 targets = p[1]
147 self.update(inputs)
148 error = error + self.backPropagate(targets, lr)
149 if i % 100 == 0:
150 print(‘error: %-.9f‘ % error)
151
152
153
154 def iris():
155 data = []
156 # 读取数据
157 raw = pd.read_csv(‘iris.csv‘)
158 raw_data = raw.values
159 raw_feature = raw_data[0:, 0:4]
160 for i in range(len(raw_feature)):
161 ele = []
162 ele.append(list(raw_feature[i]))
163 if raw_data[i][4] == ‘Iris-setosa‘:
164 ele.append([1, 0, 0])
165 elif raw_data[i][4] == ‘Iris-versicolor‘:
166 ele.append([0, 1, 0])
167 else:
168 ele.append([0, 0, 1])
169 data.append(ele)
170 # 随机排列数据
171 random.shuffle(data)
172 training = data[0:100]
173 test = data[101:]
174 nn = NN(4, 7, 3)
175 nn.train(training, iterations=10000)
176 nn.test(test)
177
178
179 if __name__ == ‘__main__‘:
180 iris()