python数据分析--------电商打折套路为例

2021-07-05 02:07

阅读:462

标签:source   log   sort   proc   ossh   ext   mod   ips   code   

如今大数据行业十分火热,本人认为python是比较强大的分析工具,在网易云课堂上学习了python数据分析。做了案例,写下代码分析过程以及分析结论。
以下是电商打折套路的python数据分析项目。

    # -*- coding: utf-8 -*-
    """
    Created on Wed Jan  9 15:31:45 2019
    
    @author: Administrator
    """
    
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import warnings
    from datetime import datetime
    
    from bokeh.transform import jitter
    warnings.filterwarnings(‘ignore‘)
    from bokeh.plotting import figure ,show,output_file
    from bokeh.models import ColumnDataSource
    #导入数据
    import os
    os.chdir(‘C:\\Users\\Administrator\\Desktop\\python项目\\2电商打折‘)
    #工作路径
    df=pd.read_excel(‘双十一数据.xlsx‘,sheetname=0)
    df.fillna(0,inplace=True)
    df.index=df[‘update-time‘]
    df[‘date‘]=df.index.day
    #双十一当天在售商品占比数
    data1=df[["id","title","店名","date"]]
    
    d1=data1[["id","date"]].groupby(by="id").agg(["max","min"])["date"]
    #统计不同商品的销售开始和结束日期
    id_11=data1[data1["date"]==11]["id"]
    
    d2=pd.DataFrame({"id":id_11,"双十一是否售卖":True})
    
    id_data=pd.merge(d1,d2,left_index=True,right_on="id",how="left")
    id_data.fillna(False,inplace=True)
    #双十一当天参与活动的商品个数与比例
    m=len(d1)
    m_11=len(id_11)
    m_pre=m_11/m
    print("双十一当天参与活动的商品个数是%i个,比例是%.2f%%"%(m_11,m_pre*100))

结论:双十一当天参与活动的商品个数是405个,比例是74.18%

    #------------------------------------------------------------------------
    #商品销售分类
    id_data["type"]="待分类"
    id_data["type"][(id_data["min"]11)]="A"
    id_data["type"][(id_data["min"]11)]="C"
    id_data["type"][(id_data["min"]==11)&(id_data["max"]==11)]="D"
    id_data["type"][(id_data["双十一是否售卖"]==False)]="F"
    id_data["type"][(id_data["max"]11)]="G"
    result1=id_data["type"].value_counts()
    result1=result1.loc[["A","B","C","D","E","F","G"]]
    #不同类别商品比例
    from bokeh.palettes import brewer
    colori=brewer["YlGn"][7]
    plt.axis("equal")
    plt.pie(result1,labels=result1.index,autopct="%.2f%%",colors=colori,
            startangle=90,radius=1.5,counterclock=True)
    #------------------------------------------------------------------------
    
    
    #未参与双十一活动的商品去向如何
    
    id_not11=id_data[id_data["双十一是否售卖"]==False]#暂时下架商品----id_con2
    df_not11=id_not11[["id","type"]]
    
    data_not11=pd.merge(df_not11,df,on="id",how="left")#分组字段不够用需要从原始总数据里借,所以要合并
    #不合并就没法分组,没法分组,就没法统计
    
    id_con1=id_data["id"][id_data["type"]=="F"].values
    
    data_con2=data_not11[["id","title","date"]].groupby(by=["id","title"]).count()
    title_count=data_con2.reset_index()["id"].value_counts()
    
    id_con2=title_count[title_count>1].index
    
    data_con3=data_not11[data_not11["title"].str.contains("预售")]
    id_con3=data_con3["id"].value_counts().index
    
    print("未参与双十一当天活动的商品里,%i个为暂时下架商品,%i个为重新上架商品,%i个为预售商品"%
          (len(id_con1),len(id_con2),len(id_con3))
          )

结论:未参与双十一当天活动的商品里,95个为暂时下架商品,155个为重新上架商品,69个为预售商品

    #------------------------------------------------------------------------
    #商品销售分类
    id_data["type"]="待分类"
    id_data["type"][(id_data["min"]11)]="A"
    id_data["type"][(id_data["min"]11)]="C"
    id_data["type"][(id_data["min"]==11)&(id_data["max"]==11)]="D"
    id_data["type"][(id_data["双十一是否售卖"]==False)]="F"
    id_data["type"][(id_data["max"]11)]="G"
    result1=id_data["type"].value_counts()
    result1=result1.loc[["A","B","C","D","E","F","G"]]

![在这里插入图片描述](https://img-blog.csdnimg.cn/20190224135019538.PNG?x-oss-
process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQwNjQ2OTU2,size_16,color_FFFFFF,t_70)

    #不同类别商品比例
    from bokeh.palettes import brewer
    colori=brewer["YlGn"][7]
    plt.axis("equal")
    plt.pie(result1,labels=result1.index,autopct="%.2f%%",colors=colori,
            startangle=90,radius=1.5,counterclock=True)
    #------------------------------------------------------------------------
    
    
    #未参与双十一活动的商品去向如何
    
    id_not11=id_data[id_data["双十一是否售卖"]==False]#暂时下架商品----id_con2
    df_not11=id_not11[["id","type"]]
    
    data_not11=pd.merge(df_not11,df,on="id",how="left")#分组字段不够用需要从原始总数据里借,所以要合并
    #不合并就没法分组,没法分组,就没法统计
    
    id_con1=id_data["id"][id_data["type"]=="F"].values
    
    data_con2=data_not11[["id","title","date"]].groupby(by=["id","title"]).count()
    title_count=data_con2.reset_index()["id"].value_counts()
    
    id_con2=title_count[title_count>1].index
    
    data_con3=data_not11[data_not11["title"].str.contains("预售")]
    id_con3=data_con3["id"].value_counts().index
    
    print("未参与双十一当天活动的商品里,%i个为暂时下架商品,%i个为重新上架商品,%i个为预售商品"%
          (len(id_con1),len(id_con2),len(id_con3))
          )
    #------------------------------------------------------------------------
    
    
    data_11sale=id_11
    data_11sale_final=np.hstack((data_11sale,id_con3))
    result2_i=pd.DataFrame({"id":data_11sale_final})
    
    x1=pd.DataFrame({"id":id_11})
    x1_df=pd.merge(x1,df,on="id",how="left")
    brand_11sale=x1_df.groupby(by="店名")["id"].count()
    
    x2=pd.DataFrame({"id":id_con3})
    x2_df=pd.merge(x2,df,on="id",how="left")
    brand_ys=x2_df.groupby(by="店名")["id"].count()
    
    
    result2_data=pd.DataFrame({"当天参与活动的商品数量":brand_11sale,
                               "预售商品数量":brand_ys})
    
    result2_data["总量"]=result2_data["当天参与活动的商品数量"]+result2_data["预售商品数量"]
    
    result2_data.sort_values(by="总量",ascending=False)
    
    
    from bokeh.models import HoverTool
    from bokeh.core.properties import value
    
    lst_brand=result2_data.index.tolist()
    lst_type=result2_data.columns.tolist()[:2]#result2_data的列名columns.取前2个
    
    color=["red","green"]
    result2_data.index.name="brand"
    
    result2_data.columns=["sale_on_11","presell","sum"]
    
    source1=ColumnDataSource(result2_data)
    
    hover=HoverTool(
            tooltips=[
                    ("品牌","@brand"),
                    ("双十一当天参与活动商品数量","@sale_on_11"),
                    ("预售商品数量","@presell"),
                    ("商品总数","@sum")
                    ])
    
    
    output_file("project08.html")
    
    p=figure(x_range=lst_brand,plot_width=900,plot_height=350,
             title="各个品牌参与双十一活动的情况",
      tools=[hover,"box_select,pan,reset,wheel_zoom,crosshair"]
             )
    
    p.vbar(top="sum",x="brand",source=source1,width=0.9,
           #color=color,alpha=0.7,
           #legend=[value(x) for x in lst_type],
           muted_color="black", muted_alpha=0.2
           )
    show(p)
    #不同品牌销售数量情况
    #------------------------------------------------------------------------
    

![在这里插入图片描述](https://img-blog.csdnimg.cn/20190224135339931.PNG?x-oss-
process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQwNjQ2OTU2,size_16,color_FFFFFF,t_70)

技术图片

python数据分析--------电商打折套路为例

标签:source   log   sort   proc   ossh   ext   mod   ips   code   

原文地址:https://www.cnblogs.com/nigulasiximegn/p/14962943.html


评论


亲,登录后才可以留言!