TensorFlow实战-VGGNet
2021-07-08 18:05
标签:softmax name log val ... return weight import nim TensorFlow实战-VGGNet 标签:softmax name log val ... return weight import nim 原文地址:http://www.cnblogs.com/fighting-lady/p/7096547.html 1 from ... import input_data
2 input_data=data_read()
3 import tensorflow as tf
4
5 def conv(name,x,w,b):
6 return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x,w,strides=[1,1,1,1],padding=‘SAME‘),b),name=name)
7
8 def max_pool(name,x,k):
9 return tf.nn.max_pool(x,ksize=[1,k,k,1],strides=[1,k,k,1],padding=‘SAME‘,name=name)
10
11 def fc(name,x,w,b):
12 return tf.nn.relu(tf.matmul(x,w)+b,name=name)
13
14 def vgg_net(_X,_weights,_biases,keep_prob):
15 x_shape=_X.get_shape()
16 _X=tf.reshape(_X,shape=[-1,X_shape[1].value,x_shape[2].value,x_shape[3].value])
17
18 conv1_1=conv(‘conv1_1‘,_X,_weights[‘wc1_1‘],_biases[‘bc1_1‘])
19 conv1_2=conv(‘conv1_2‘,conv1_1,_weights[‘wc1_2‘],_biases[‘bc1_2‘])
20 pool1=max_pool(‘pool1‘,conv1_2,k=2)
21
22 conv2_1=conv(‘conv2_1‘,pool1,_weights[‘wc2_1‘],_biases[‘bc2_1‘])
23 conv2_2=conv(‘conv2_2‘,conv2_1,_weights[‘wc2_2‘],_biases[‘bc2_2‘])
24 pool2=max_pool(‘pool2‘,conv2_2,k=2)
25
26 conv3_1=conv(‘conv3_1‘,pool2,_weights[‘wc3_1‘],_biases[‘bc3_1‘])
27 conv3_2=conv(‘conv3_2‘,conv3_1,_weights[‘wc3_2‘],_biases[‘bc3_2‘])
28 conv3_3=conv(‘conv3_3‘,conv3_2,_weights[‘wc3_3‘],_biases[‘bc3_3‘])
29 pool3=max_pool(‘pool3‘,conv3_3,k=2)
30
31 conv4_1=conv(‘conv4_1‘,pool3,_weights[‘wc4_1‘],_biases[‘bc4_1‘])
32 conv4_2=conv(‘conv4_2‘,conv4_1,_weights[‘wc4_2‘],_biases[‘bc4_2‘])
33 conv4_3=conv(‘conv4_3‘,conv4_2,_weights[‘wc4_3‘],_biases[‘bc4_3‘])
34 pool4=max_pool(‘pool4‘,conv4_3,k=2)
35
36 conv5_1=conv(‘conv5_1‘,pool4,_weights[‘wc5_1‘],_biases[‘bc5_1‘])
37 conv5_2=conv(‘conv5_2‘,conv5_1,_weights[‘wc5_2‘],_biases[‘bc5_2‘])
38 conv5_3=conv(‘conv5_3‘,conv5_2,_weights[‘wc5_3‘],_biases[‘bc5_3‘])
39 pool5=max_pool(‘pool5‘,conv5_3,k=2)
40
41 _shape=pool5.get_shape()
42 flatten=_shape[1].value*_shape[2].value*_shape[3].value
43 pool5=tf.reshape(pool5,shape=[-1,flatten])
44 fc1=fc(‘fc1‘,pool5,_weights[‘fc1‘],_biases[‘fb1‘])
45 fc1=tf.nn.dropout(fc1,keep_prob)
46
47 fc2=fc(‘fc2‘,fc1,_weights[‘fc2‘],_biases[‘fb2‘])
48 fc2=tf.nn.dropout(fc2,keep_prob)
49
50 fc3=fc(‘fc3‘,fc2,_weights[‘fc3‘],_biases[‘fb3‘])
51 fc3=tf.nn.dropout(fc3,keep_prob)
52
53 out=tf.argmax(tf.nn.softmax(fc3),1)
54
55 return out
56
57 learning_rate=0.001
58 max_iters=200000
59 batch_size=100
60 display_step=20
61
62 n_input=224*224*3
63 n_classes=1000
64 dropout=0.8
65
66 x=tf.placeholder(tf.float32,[None,n_input])
67 y=tf.placeholder(tf.float32,[None,n_classes])
68 keep_prob=tf.placeholder(tf.float32)
69
70 weights={
71 ‘wc1_1‘:tf.Variable(tf.random_normal([3,3,3,64])),
72 ‘wc1_2‘:tf.Variable(tf.random_normal([3,3,64,64])),
73 ‘wc2_1‘:tf.Variable(tf.random_normal([3,3,64,128])),
74 ‘wc2_2‘:tf.Variable(tf.random_normal([3,3,128,128])),
75 ‘wc3_1‘:tf.Variable(tf.random_normal([3,3,128,256])),
76 ‘wc3_2‘:tf.Variable(tf.random_normal([3,3,256,256])),
77 ‘wc3_3‘:tf.Variable(tf.random_normal([3,3,256,256])),
78 ‘wc4_1‘:tf.Variable(tf.random_normal([3,3,256,512])),
79 ‘wc4_2‘:tf.Variable(tf.random_normal([3,3,512,512])),
80 ‘wc4_3‘:tf.Variable(tf.random_normal([3,3,512,512])),
81 ‘wc5_1‘:tf.Variable(tf.random_normal([3,3,512,512])),
82 ‘wc5_2‘:tf.Variable(tf.random_normal([3,3,512,512])),
83 ‘wc5_3‘:tf.Variable(tf.random_normal([3,3,512,512])),
84 ‘fc1‘:tf.Variable(tf.random_normal([7*7*512,4096])),
85 ‘fc2‘:tf.Variable(tf.random_normal([4096,4096])),
86 ‘fc3‘:tf.Variable(tf.random_normal([4096,n_classes]))
87 }
88
89 biases={
90 ‘bc1_1‘:tf.Variable(tf.random_normal([64])),
91 ‘bc1_2‘:tf.Variable(tf.random_normal([64])),
92 ‘bc2_1‘:tf.Variable(tf.random_normal([128])),
93 ‘bc2_2‘:tf.Variable(tf.random_normal([128])),
94 ‘bc3_1‘:tf.Variable(tf.random_normal([256])),
95 ‘bc3_2‘:tf.Variable(tf.random_normal([256])),
96 ‘bc3_3‘:tf.Variable(tf.random_normal([256])),
97 ‘bc4_1‘:tf.Variable(tf.random_normal([512])),
98 ‘bc4_2‘:tf.Variable(tf.random_normal([512])),
99 ‘bc4_3‘:tf.Variable(tf.random_normal([512])),
100 ‘bc5_1‘:tf.Variable(tf.random_normal([512])),
101 ‘bc5_2‘:tf.Variable(tf.random_normal([512])),
102 ‘bc5_3‘:tf.Variable(tf.random_normal([512]))
103 }
104
105 pred=vgg_net(x,weights,biases,keep_prob)
106
107 cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred,y))
108 optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
109
110 correct=tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
111 accuracy=tf.reduce_mean(tf.cast(correct,float32))
112
113 init=tf.initialize_all_variables()
114
115 with tf.Session() as sess:
116 sess.run(init)
117 step=1
118
119 while step*batch_sizemax_iters:
120 batch_xs,batch_ys=mnist.train.next_batch(batch_size)
121 sess.run(optimizer,feed_dict{x:batch_xs,y:batch_ys,keep_prob:dropout})
122
123 step+=1
文章标题:TensorFlow实战-VGGNet
文章链接:http://soscw.com/index.php/essay/102437.html