解决 Prometheus 不能获取 Kubernetes 集群上 Windows 节点的 Metrics

2021-07-09 04:08

阅读:546

标签:pytho   页面   sum   返回   thread   kubectl   name   urlopen   rom   

背景

接上一篇 快速搭建 Windows Kubernetes , 我们发现原来在 Windows Kubernetes 会有一些与在 Linux 上使用不一样的体验,俗称坑,例如 hostAliases。对于我们希望真的把 Windows 放入生产,感觉除了基本的 Pod、Volume、Service 、Log 以外,我们还需要监控。一般来讲我们会用 Prometheus 来做监控,然后通过 Grafana 来展示,但是 Prometheus 的 Node Exporter 是为 *nix 设计的,所以在 Windows 上我们的自己想办法了。在 Prometheus Node Exporter 里推荐使用 WMI exporter ,感兴趣的童鞋可以去试试,本文主要还是想从一个原始的角度去分析处理,来理解怎么去写一个 Prometheus 的采集程序。

前提

  • 一套 Windows Kuberentes
  • 一个 Prometheus 环境

步骤

  • 首先得找到 Kubelet 在 Windows 上暴露出来得数据格式, 因为 cadivsor 并不支持 Windows, 社区有位同志写了一个相对简单的实现来支持; 他这个的实现还是保持 Linux 上的一样,是从 :10255/stats/summary上 expose metrics, metrics-server 与 kubectl top的数据也是来源于此,大致如下:
{
  "node": {
   "nodeName": "35598k8s9001",
   "startTime": "2018-08-26T07:25:08Z",
   "cpu": {
    "time": "2018-09-10T01:44:52Z",
    "usageCoreNanoSeconds": 8532520000000
   },
   "memory": {
    "time": "2018-09-10T01:44:52Z",
    "availableBytes": 14297423872,
    "usageBytes": 1978798080,
    "workingSetBytes": 734490624,
    "rssBytes": 0,
    "pageFaults": 0,
    "majorPageFaults": 0
   },
   "fs": {
    "time": "2018-09-10T01:44:52Z",
    "availableBytes": 15829303296,
    "capacityBytes": 32212250624,
    "usedBytes": 16382947328
   },
   "runtime": {
    "imageFs": {
     "time": "2018-09-10T01:44:53Z",
     "availableBytes": 15829303296,
     "capacityBytes": 32212250624,
     "usedBytes": 16382947328,
     "inodesUsed": 0
    }
   }
  },
  "pods": [
   {
    "podRef": {
     "name": "stdlogserverwin-5fbcc5648d-ztqsq",
     "namespace": "default",
     "uid": "f461a0b4-ab36-11e8-93c4-0017fa0362de"
    },
    "startTime": "2018-08-29T02:55:15Z",
    "containers": [
     {
      "name": "stdlogserverwin",
      "startTime": "2018-08-29T02:56:24Z",
      "cpu": {
       "time": "2018-09-10T01:44:54Z",
       "usageCoreNanoSeconds": 749578125000
      },
      "memory": {
       "time": "2018-09-10T01:44:54Z",
       "workingSetBytes": 83255296
      },
      "rootfs": {
       "time": "2018-09-10T01:44:54Z",
       "availableBytes": 15829303296,
       "capacityBytes": 32212250624,
       "usedBytes": 0
      },
      "logs": {
       "time": "2018-09-10T01:44:53Z",
       "availableBytes": 15829303296,
       "capacityBytes": 32212250624,
       "usedBytes": 16382947328,
       "inodesUsed": 0
      },
      "userDefinedMetrics": null
     }
    ],
    "cpu": {
     "time": "2018-08-29T02:56:24Z",
     "usageNanoCores": 0,
     "usageCoreNanoSeconds": 749578125000
    },
    "memory": {
     "time": "2018-09-10T01:44:54Z",
     "availableBytes": 0,
     "usageBytes": 0,
     "workingSetBytes": 83255296,
     "rssBytes": 0,
     "pageFaults": 0,
     "majorPageFaults": 0
    },
    "volume": [
     {
      "time": "2018-08-29T02:55:16Z",
      "availableBytes": 17378648064,
      "capacityBytes": 32212250624,
      "usedBytes": 14833602560,
      "inodesFree": 0,
      "inodes": 0,
      "inodesUsed": 0,
      "name": "default-token-wv5fc"
     }
    ],
    "ephemeral-storage": {
     "time": "2018-09-10T01:44:54Z",
     "availableBytes": 15829303296,
     "capacityBytes": 32212250624,
     "usedBytes": 16382947328
    }
   }
  ]
}
  • 从上面可以看到,它包含了本机和 pod 的一些 metrics, 相对 cadvisor 能提供的少了一些,但是基本监控是没问题的。接下来我们需要写一个小程序把数据转换成 Prometheus 能解析的数据。接下来用 python 写个小栗子, 先声明下我们要 expose 的 stats 对象
class Node:
    def __init__(self, name, cpu, memory):
        self.name = name
        self.cpu = cpu
        self.memory = memory

class Pod:
    def __init__(self, name, namespace,cpu, memory):
        self.name = name
        self.namespace = namespace
        self.cpu = cpu
        self.memory = memory

class Stats:
    def __init__(self, node, pods):
        self.node = node
        self.pods = pods
  • 使用 Prometheus 的 python-client 来写一个 polling 的程序,去转换 kubelet stats 数据。
from urllib.request import urlopen
from stats import Node
from stats import Pod
from stats import Stats
import json
import asyncio
import prometheus_client as prom
import logging
import random

def getMetrics(url):
    #获取数据集
    response = urlopen(url)
    string = response.read().decode(‘utf-8‘)
    json_obj = json.loads(string)
    #用之前定义好的 stats 的对象来做 mapping
    node = Node(‘‘,‘‘,‘‘)
    node.name = json_obj[‘node‘][‘nodeName‘]
    node.cpu = json_obj[‘node‘][‘cpu‘][‘usageCoreNanoSeconds‘]
    node.memory = json_obj[‘node‘][‘memory‘][‘usageBytes‘]

    pods_array = json_obj[‘pods‘]

    pods_list = []

    for item in pods_array:
        pod = Pod(‘‘,‘‘,‘‘,‘‘)
        pod.name = item[‘podRef‘][‘name‘]
        pod.namespace = item[‘podRef‘][‘namespace‘]
        pod.cpu = item[‘cpu‘][‘usageCoreNanoSeconds‘]
        pod.memory = item[‘memory‘][‘workingSetBytes‘]
        pods_list.append(pod)

    stats = Stats(‘‘,‘‘)
    stats.node = node
    stats.pods = pods_list
    return stats

#写个简单的日志输出格式
format = "%(asctime)s - %(levelname)s [%(name)s] %(threadName)s %(message)s"
logging.basicConfig(level=logging.INFO, format=format)
#声明我们需要导出的 metrics 及对应的  label 供未来查询使用
g1 = prom.Gauge(‘node_cpu_usageCoreNanoSeconds‘, ‘CPU useage of the node‘, labelnames=[‘node_name‘])
g2 = prom.Gauge(‘node_mem_usageBytes‘, ‘Memory useage of the node‘, labelnames=[‘node_name‘])
g3 = prom.Gauge(‘pod_cpu_usageCoreNanoSeconds‘, ‘Memory useage of the node‘, labelnames=[‘pod_name‘,‘pod_namespace‘])
g4 = prom.Gauge(‘pod_mem_usageBytes‘, ‘Memory useage of the node‘, labelnames=[‘pod_name‘,‘pod_namespace‘])

async def expose_stats(url):
    while True:
        stats = getMetrics(url)
        #以打印 node 本身的监控信息为例
        logging.info("nodename: {} value {}".format(stats.node.name, stats.node.cpu))
        # 为当前要 poll 的 metrics 赋值
        g1.labels(node_name=stats.node.name).set(stats.node.cpu)
        g2.labels(node_name=stats.node.name).set(stats.node.memory)
        pods_array = stats.pods
        for item in pods_array:
            g3.labels(pod_name=item.name,pod_namespace=item.namespace).set(item.memory)
            g4.labels(pod_name=item.name,pod_namespace=item.namespace).set(item.cpu)
        await asyncio.sleep(1)
if __name__ == ‘__main__‘:
    loop = asyncio.get_event_loop()
    # 启动一个 http server 来做 polling
    prom.start_http_server(8000)
    t0_value = 50
    #可以在每一台 Windows 机器上都启动一个这样的程序,也可以远程部署脚本来做 exposing
    url = ‘http://localhost:10255/stats/summary‘
    tasks = [loop.create_task(expose_stats(url))]
    try:
        loop.run_forever()
    except KeyboardInterrupt:
        pass
    finally:
        loop.close()
  • 写完以后就可以启动这个程序了,访问他的 8000 端口就能看到相关的数据

技术分享图片

  • 接下来需要在 prometheus 里加入配置,增加一个收集对象,如下例:
- job_name: python_app
  scrape_interval: 15s
  scrape_timeout: 10s
  metrics_path: /
  scheme: http
  static_configs:
  - targets:
    - localhost:8000
  • 这样在 Prometheus 的页面上能查询到相关的信息了

技术分享图片

提问??

  • kubelet 返回的usageNanoCoresusageCoreNanoSeconds 怎么换算成我们通常理解的 CPU 使用百分比

Ref:

  • https://github.com/prometheus
  • https://github.com/grafana/grafana
  • https://github.com/prometheus/node_exporter
  • https://github.com/google/cadvisor/issues/1394
  • https://github.com/kubernetes/kubernetes/pull/50396
  • https://github.com/prometheus/client_python

解决 Prometheus 不能获取 Kubernetes 集群上 Windows 节点的 Metrics

标签:pytho   页面   sum   返回   thread   kubectl   name   urlopen   rom   

原文地址:https://www.cnblogs.com/bigdaddyblog/p/9719878.html


评论


亲,登录后才可以留言!