利用Django框架中select_related和prefetch_related函数对数据库查询优化

2018-09-22 00:50

阅读:628

  实例的背景说明

  假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:

  Models.py 内容如下:

  注1:创建的app名为“QSOptimize”

  注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市

  如果我们想要获得所有家乡是湖北的人,最无脑的做法是先获得湖北省,再获得湖北的所有城市,最后获得故乡是这个城市的人。就像这样:

   >>> hb = Province.objects.get(name__iexact=u湖北省) >>> people = [] >>> for city in hb.city_set.all(): ... people.extend(city.birth.all()) ...

  显然这不是一个明智的选择,因为这样做会导致1+(湖北省城市数)次SQL查询。反正是个反例,导致的查询和获得掉结果就不列出来了。
prefetch_related() 或许是一个好的解决方法,让我们来看看。

   >>> hb = Province.objects.prefetch_related(city_set__birth).objects.get(name__iexact=u湖北省) >>> people = [] >>> for city in hb.city_set.all(): ... people.extend(city.birth.all()) ...

  因为是一个深度为2的prefetch,所以会导致3次SQL查询:

   SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`name` LIKE 湖北省 ; SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` WHERE `QSOptimize_city`.`province_id` IN (1); SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);

  嗯…看上去不错,但是3次查询么?倒过来查询可能会更简单?

   >>> people = list(Person.objects.select_related(hometown__province).filter(hometown__province__name__iexact=u湖北省)) SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_person` INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`) INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) WHERE `QSOptimize_province`.`name` LIKE 湖北省; +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+ id firstname lastname hometown_id living_id id name province_id id name +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+ 1 张 三 3 1 3 十堰市 1 1 湖北省 2 李 四 1 3 1 武汉市 1 1 湖北省 3 王 麻子 3 2 3 十堰市 1 1 湖北省 +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+ 3 rows in set (0.00 sec)

  完全没问题。不仅SQL查询的数量减少了,python程序上也精简了。
select_related()的效率要高于prefetch_related()。因此,最好在能用select_related()的地方尽量使用它,也就是说,对于ForeignKey字段,避免使用prefetch_related()。
联用
对于同一个QuerySet,你可以同时使用这两个函数。
在我们一直使用的例子上加一个model:Order (订单)

   class Order(models.Model): customer = models.ForeignKey(Person) orderinfo = models.CharField(max_length=50) time = models.DateTimeField(auto_now_add = True) def __unicode__(self): return self.orderinfo

  如果我们拿到了一个订单的id 我们要知道这个订单的客户去过的省份。因为有ManyToManyField显然必须要用prefetch_related()。如果只用prefetch_related()会怎样呢?

   >>> plist = Order.objects.prefetch_related(customer__visitation__province).get(id=1) >>> for city in plist.customer.visitation.all(): ... print city.province.name ...

  显然,关系到了4个表:Order、Person、City、Province,根据prefetch_related()的特性就得有4次SQL查询

   SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time` FROM `QSOptimize_order` WHERE `QSOptimize_order`.`id` = 1 ; SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE `QSOptimize_person`.`id` IN (1); SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1); SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` IN (1, 2); +----+-------------+---------------+---------------------+ id customer_id orderinfo time +----+-------------+---------------+---------------------+ 1 1 Info of Order 2014-08-10 17:05:48 +----+-------------+---------------+---------------------+ 1 row in set (0.00 sec) +----+-----------+----------+-------------+-----------+ id firstname lastname hometown_id living_id +----+-----------+----------+-------------+-----------+ 1 张 三 3 1 +----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) +-----------------------+----+--------+-------------+ _prefetch_related_val id name province_id +-----------------------+----+--------+-------------+ 1 1 武汉市 1 1 2 广州市 2 1 3 十堰市 1 +-----------------------+----+--------+-------------+ 3 rows in set (0.00 sec) +----+--------+ id name +----+--------+ 1 湖北省 2 广东省 +----+--------+ 2 rows in set (0.00 sec)

  更好的办法是先调用一次select_related()再调用prefetch_related(),最后再select_related()后面的表

   >>> plist = Order.objects.select_related(customer).prefetch_related(customer__visitation__province).get(id=1) >>> for city in plist.customer.visitation.all(): ... print city.province.name ...

  这样只会有3次SQL查询,Django会先做select_related,之后prefetch_related的时候会利用之前缓存的数据,从而避免了1次额外的SQL查询:

   SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time`, `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_order` INNER JOIN `QSOptimize_person` ON (`QSOptimize_order`.`customer_id` = `QSOptimize_person`.`id`) WHERE `QSOptimize_order`.`id` = 1 ; SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1); SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` IN (1, 2); +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ id customer_id orderinfo time id firstname lastname hometown_id living_id +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ 1 1 Info of Order 2014-08-10 17:05:48 1 张 三 3 1 +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) +-----------------------+----+--------+-------------+ _prefetch_related_val id name province_id +-----------------------+----+--------+-------------+ 1 1 武汉市 1 1 2 广州市 2 1 3 十堰市 1 +-----------------------+----+--------+-------------+ 3 rows in set (0.00 sec) +----+--------+ id name +----+--------+ 1 湖北省 2 广东省 +----+--------+ 2 rows in set (0.00 sec)

  值得注意的是,可以在调用prefetch_related之前调用select_related,并且Django会按照你想的去做:先select_related,然后利用缓存到的数据prefetch_related。然而一旦prefetch_related已经调用,select_related将不起作用。

  小结

   因为select_related()总是在单次SQL查询中解决问题,而prefetch_related()会对每个相关表进行SQL查询,因此select_related()的效率通常比后者高。 鉴于第一条,尽可能的用select_related()解决问题。只有在select_related()不能解决问题的时候再去想prefetch_related()。 你可以在一个QuerySet中同时使用select_related()和prefetch_related(),从而减少SQL查询的次数。 只有prefetch_related()之前的select_related()是有效的,之后的将会被无视掉。


评论


亲,登录后才可以留言!