使用pandas将numpy中的数组数据保存到csv文件的方法
2018-10-15 17:14
阅读:364
接触pandas之后感觉它的很多功能似乎跟numpy有一定的重复,尤其是各种运算。不过,简单的了解之后发现在数据管理上pandas有着更为丰富的管理方式,其中一个很大的优点就是多出了对数据文件的管理。
如果想保存numpy中的数组元素到一个文件中,通过纯Python的文件写入当然是可以实现的,但是总觉得是少了一点便捷性。在这方面,pandas工具的使用就会让工作方便很多。下面通过一个简单的小例子来演示一下。
首先,创建numpy中的数组。
In [18]: arr1 = np.arange(100).reshape(10,10) In [19]: arr1 Out[19]: array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59], [60, 61, 62, 63, 64, 65, 66, 67, 68, 69], [70, 71, 72, 73, 74, 75, 76, 77, 78, 79], [80, 81, 82, 83, 84, 85, 86, 87, 88, 89], [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])接着,为了能够使这组数据成为可以让pandas处理的数据,需要通过这个数组创建DataFrame。
In [20]: data1 = DataFrame(arr1)这样,就可以通过pandas中DataFrame的to_csv方法实现数据文件的存储了。具体如下:
In [21]: data1.to_csv(data1.csv) In [22]: cat data1.csv ,0,1,2,3,4,5,6,7,8,9 0,0,1,2,3,4,5,6,7,8,9 1,10,11,12,13,14,15,16,17,18,19 2,20,21,22,23,24,25,26,27,28,29 3,30,31,32,33,34,35,36,37,38,39 4,40,41,42,43,44,45,46,47,48,49 5,50,51,52,53,54,55,56,57,58,59 6,60,61,62,63,64,65,66,67,68,69 7,70,71,72,73,74,75,76,77,78,79 8,80,81,82,83,84,85,86,87,88,89 9,90,91,92,93,94,95,96,97,98,99回头看一下被存储的数据格式:
从上面的结果看一看出,转换成DataFrame的同时,数据信息增加了行列标题信息。
通过电子表格软件打开csv文件的效果如下:
以上这篇使用pandas将numpy中的数组数据保存到csv文件的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
文章来自:搜素材网的编程语言模块,转载请注明文章出处。
文章标题:使用pandas将numpy中的数组数据保存到csv文件的方法
文章链接:http://soscw.com/index.php/essay/18479.html
文章标题:使用pandas将numpy中的数组数据保存到csv文件的方法
文章链接:http://soscw.com/index.php/essay/18479.html
评论
亲,登录后才可以留言!