ResNet实战

2020-12-17 20:33

阅读:421

# Resnet.py #!/usr/bin/env python # -*- coding:utf-8 -*- import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, Sequential

class BasicBlock(layers.Layer):
def init(self, filter_num, stride=1):
super(BasicBlock, self).init()

    self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding=‘same‘)
    self.bn1 = layers.BatchNormalization()
    self.relu = layers.Activation(‘relu‘)

    self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding=‘same‘)
    self.bn2 = layers.BatchNormalization()

    if stride != 1:
        self.downsample = Sequential()
        self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
    else:
        self.downsample = lambda x: x

def call(self, inputs, training=None):
    # [b,h,w,c]
    out = self.conv1(inputs)
    out = self.bn1(out)
    out = self.relu(out)

    out = self.conv2(out)
    out = self.bn2(out)

    identity = self.downsample(inputs)

    output = layers.add([out, identity])
    output = tf.nn.relu(output)

    return out

class ResNet(keras.Model):
def init(self, layer_dims, num_classes=100): # [2,2,2,2]
super(ResNet, self).init()

    # 根部
    self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1,)),
                            layers.BatchNormalization(),
                            layers.Activation(‘relu‘),
                            layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding=‘same‘)
                            ])

    # 64,128,256,512是通道数
    self.layer1 = self.build_resblock(64, layer_dims[0])
    self.layer2 = self.build_resblock(128, layer_dims[1], stride=2)
    self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
    self.layer4 = self.build_resblock(512, layer_dims[3], stride=2)

    # output: [b, 512, h, w]
    self.avgpool = layers.GlobalAveragePooling2D()
    self.fc = layers.Dense(num_classes)  # 分类

def call(self, inputs, training=None):
    x = self.stem(inputs)

    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    x = self.layer4(x)

    # [b, c]
    x = self.avgpool(x)
    # [b]
    x = self.fc(x)

    return x

def build_resblock(self, filter_num, blocks, stride=1):
    res_blocks = Sequential()
    # may down sample
    res_blocks.add(BasicBlock(filter_num, stride))

    for _ in range(1, blocks):
        res_blocks.add(BasicBlock(filter_num, stride=1))

    return res_blocks

def resnet18():
return ResNet([2, 2, 2, 2])

def resnet34():
return ResNet([3, 4, 6, 3])


评论


亲,登录后才可以留言!