Flume基础(十一):自定义 Interceptor

2021-01-16 05:12

阅读:724

标签:body   multi   系统   buffer   text   use   sources   intercept   city   

1)案例需求
使用 Flume 采集服务器本地日志,需要按照日志类型的不同,将不同种类的日志发往不同的分析系统。
2)需求分析
  在实际的开发中,一台服务器产生的日志类型可能有很多种,不同类型的日志可能需要发送到不同的分析系统。此时会用到 Flume 拓扑结构中的 Multiplexing 结构,Multiplexing的原理是,根据 event 中 Header 的某个 key 的值,将不同的 event 发送到不同的 Channel中,所以我们需要自定义一个 Interceptor,为不同类型的 event 的 Header 中的 key 赋予不同的值。
  在该案例中,我们以端口数据模拟日志,以数字(单个)和字母(单个)模拟不同类型的日志,我们需要自定义 interceptor 区分数字和字母,将其分别发往不同的分析系统(Channel)。
技术图片
3)实现步骤
1.创建一个 maven 项目,并引入以下依赖。 
org.apache.flume
 flume-ng-core
 1.7.0
2.定义 CustomInterceptor 类并实现 Interceptor 接口。
package com.atguigu.flume.interceptor;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.util.List;
public class CustomInterceptor implements Interceptor {
 @Override
 public void initialize() {
 }
 @Override
 public Event intercept(Event event) {
 byte[] body = event.getBody();
 if (body[0] ‘z && body[0] > a) {
 event.getHeaders().put("type", "letter");
 } else if (body[0] > 0 && body[0] ‘9) {
 event.getHeaders().put("type", "number");
 }
 return event;
 }
 @Override
 public List intercept(List events) {
 for (Event event : events) {
 intercept(event);
 }
 return events;
 }
 @Override
 public void close() {
 }
 public static class Builder implements Interceptor.Builder {
 @Override
 public Interceptor build() {
 return new CustomInterceptor();
 }
 @Override
 public void configure(Context context) {
 }
 } }
3.编辑 flume 配置文件
为 hadoop102 上的 Flume1 配置 1 个 netcat source,1 个 sink group(2 个 avro sink),并配置相应的 ChannelSelector 和 interceptor。
# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = 
com.atguigu.flume.interceptor.CustomInterceptor$Builder
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = type
a1.sources.r1.selector.mapping.letter = c1
a1.sources.r1.selector.mapping.number = c2
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop103
a1.sinks.k1.port = 4141
a1.sinks.k2.type=avro
a1.sinks.k2.hostname = hadoop104
a1.sinks.k2.port = 4242
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Use a channel which buffers events in memory
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2
为 hadoop103 上的 Flume2 配置一个 avro source 和一个 logger sink。 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
a1.sources.r1.type = avro
a1.sources.r1.bind = hadoop103
a1.sources.r1.port = 4141
a1.sinks.k1.type = logger
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sinks.k1.channel = c1
a1.sources.r1.channels = c1
为 hadoop104 上的 Flume3 配置一个 avro source 和一个 logger sink。 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
a1.sources.r1.type = avro
a1.sources.r1.bind = hadoop104
a1.sources.r1.port = 4242
a1.sinks.k1.type = logger

a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sinks.k1.channel = c1
a1.sources.r1.channels = c1
4.分别在 hadoop102,hadoop103,hadoop104 上启动 flume 进程,注意先后顺序。
5.在 hadoop102 使用 netcat 向 localhost:44444 发送字母和数字。
6.观察 hadoop103 和 hadoop104 打印的日志。 

 

 

 

Flume基础(十一):自定义 Interceptor

标签:body   multi   系统   buffer   text   use   sources   intercept   city   

原文地址:https://www.cnblogs.com/qiu-hua/p/13382740.html


评论


亲,登录后才可以留言!