LSTM的备胎,用卷积处理时间序列——TCN与因果卷积(理论+Python实践)

2021-01-16 13:13

阅读:572

标签:图像   不用   mod   链接   nsa   -o   utils   问题   ado   

什么是TCN

TCN全称Temporal Convolutional Network,时序卷积网络,是在2018年提出的一个卷积模型,但是可以用来处理时间序列。

卷积如何处理时间序列

时间序列预测,最容易想到的就是那个马尔可夫模型:

\[P(y_k|x_k,x_{k-1},...,x_1) \]

就是计算某一个时刻的输出值,已知条件就是这个时刻之前的所有特征值。上面公式中,P表示概率,可以不用管这个,\(y_k\)表示k时刻的输出值(标签),\(x_k\)表示k时刻的特征值。

如果使用LSTM或者是GRU这样的RNN模型,自然是可以处理这样的时间序列模型的,毕竟RNN生来就是为了这个的。

但是这个时间序列模型,宏观上思考的话,其实就是对这个这个时刻之前的数据做某个操作,然后生成一个标签,回想一下在卷积在图像中的操作,其实有异曲同工。(这里不理解也无妨,因为我之前搞了一段时间图像处理,所以对卷积相对熟悉一点)。

一维卷积

假设有一个时间序列,总共有五个时间点,比方说股市,有一个股票的价格波动:[10,13,12,14,15]:
技术图片
TCN中,或者说因果卷积中,使用的卷积核大小都是2,我也不知道为啥不用更大的卷积核,看论文中好像没有说明这个,如果有小伙伴知道原因或者有猜想,可以下方评论处一起讨论讨论。

卷积核是2,那么可想而知,对上面5个数据做一个卷积核为2的卷积是什么样子的:
技术图片
五个数据经过一次卷积,可以变成四个数据,但是每一个卷积后的数据都是基于两个原始数据得到的,所以说,目前卷积的视野域是2。

可以看到是输入是5个数据,但是经过卷积,变成4个数据了,在图像中有一个概念是通过padding来保证卷积前后特征图尺寸不变,所以在时间序列中,依然使用padding来保证尺寸不变:
技术图片
padding是左右两头都增加0,如果padding是1的话,就是上图的效果,其实会产生6个新数据,但是秉着:“输入输出尺寸相同”和“我们不能知道未来的数据”,所以最后边那个未来的padding,就省略掉了,之后再代码中会体现出来。

总之,现在我们大概能理解,对时间序列卷积的大致流程了,也就是对一维数据卷积的过程(图像卷积算是二维)。

下面看如何使用Pytorch来实现一维卷积:

net = nn.Conv1d(in_channels=1,out_channels=1,kernel_size=2,stride=1,padding=1,dilation=1)

其中的参数跟二维卷积非常类似,也是有通道的概念的。这个好好品一下,一维数据的通道跟图像的通道一样,是根据不同的卷积核从相同的输入中抽取出来不同的特征。kernel_size=2之前也说过了,padding=1也没问题,不过这个公式中假如输入5个数据+padding=1,会得到6个数据,最后一个数据被舍弃掉。dilation是膨胀系数,下面的下面会讲。

因果卷积

  • 因果卷积是在wavenet这个网络中提出的,之后被用在了TCN中。
    TCN的论文链接:
  • 因果卷积应为就是:Causal Convolutions。

之前已经讲了一维卷积的过程了,那么因果卷积,其实就是一维卷积的一种应用吧算是。

假设想用上面讲到的概念,做一个股票的预测决策模型,然后希望决策模型可以考虑到这个时间点之前的4个时间点的股票价格进行决策,总共有3种决策:

  • 0:不操作,1:买入,2:卖出

所以其实就是一个分类问题。因为要求视野域是4,所以按照上面的设想,要堆积3个卷积核为2的1维卷积层:
技术图片
三次卷积,可以让最后的输出,拥有4个视野域。就像是上图中红色的部分,就是做出一个决策的过程。

股票数据,往往是按照分钟记录的,那少说也是十万、百万的数据量,我们决策,想要考虑之前1000个时间点呢?视野域要是1000,那意味着要999层卷积?啥计算机吃得消这样的计算。所以引入了膨胀因果卷积。

膨胀因果卷积

  • 英文是Dilated Causal Convolution。这个其实就是空洞卷积啦,不确定在之前的博文中有没有讲过这个概念(最近别人要求在写一个非常长的教程,和博客中的博文可能会有记忆混乱的情况2333)
  • 反正就是,这个空洞卷积、或者叫扩张卷积、或者叫膨胀卷积就是操作dilation这个参数。
    技术图片
    如图,这个就是dilation=2的时候的情况,与之前的区别有两个:
  • 看红色区域:可以看到卷积核大小依然是2,但是卷积核之间变得空洞了,隔过去了一个数据;如果dilation=3的话,那么可以想而知,这个卷积核中间会空的更大,会隔过去两个数据。
  • 看淡绿色数据:因为dilation变大了,所以相应的padding的数量从1变成了2,所以为了保证输入输出的特征维度相同,padding的数值等于dalition的数值(在卷积核是2的情况下,严格说说:padding=(kernel_size-1)*dilation)

然后我们依然实现上面那个例子,每次决策想要视野域为4:
技术图片
可以看到,第一次卷积使用dilation=1的卷积,然后第二次使用dilation=2的卷积,这样通过两次卷积就可以实现视野域是4.

那么假设事业域要是8呢?那就再加一个dilation=4的卷积。dilation的值是2的次方,然后视野域也是2的次方的增长,那么就算是要1000视野域,那十层大概就行了。

这里有一个动图,挺好看的:
技术图片

TCN结构

TCN基本就是一个膨胀因果卷积的过程,只是上面我们实现因果卷积就只有一个卷积层。而TCN的稍微复杂一点(但是不难!)

  • 卷积结束后会因为padding导致卷积之后的新数据的尺寸B>输入数据的尺寸A,所以只保留输出数据中前面A个数据;
  • 卷积之后加上个ReLU和Dropout层,不过分吧这要求。
  • 然后TCN中并不是每一次卷积都会扩大一倍的dilation,而是每两次扩大一倍的dilation
  • 总之TCN中的基本组件:TemporalBlock()是两个dilation相同的卷积层,卷积+修改数据尺寸+relu+dropout+卷积+修改数据尺寸+relu+dropout
  • 之后弄一个Resnet残差连接来避免梯度消失,结束!
    关于Resnet的内容:【从零学习PyTorch】 如何残差网络resnet作为pre-model +代码讲解+残差网络resnet是个啥其实不看也行,不妨碍理解TCN

模型的PyTorch实现(最好了解一点PyTorch)

如果不了解的话,emm,我要安利我的博文了2333:
从零学习pytorch 第5课 PyTorch模型搭建三要素

# 导入库
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
# 这个函数是用来修剪卷积之后的数据的尺寸,让其与输入数据尺寸相同。
class Chomp1d(nn.Module):
    def __init__(self, chomp_size):
        super(Chomp1d, self).__init__()
        self.chomp_size = chomp_size

    def forward(self, x):
        return x[:, :, :-self.chomp_size].contiguous()

可以看出来,这个函数就是第一个数据到倒数第chomp_size的数据,这个chomp_size就是padding的值。比方说输入数据是5,padding是1,那么会产生6个数据没错吧,那么就是保留前5个数字。

# 这个就是TCN的基本模块,包含8个部分,两个(卷积+修剪+relu+dropout)
# 里面提到的downsample就是下采样,其实就是实现残差链接的部分。不理解的可以无视这个
class TemporalBlock(nn.Module):
    def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
        super(TemporalBlock, self).__init__()
        self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,
                                           stride=stride, padding=padding, dilation=dilation))
        self.chomp1 = Chomp1d(padding)
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(dropout)

        self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,
                                           stride=stride, padding=padding, dilation=dilation))
        self.chomp2 = Chomp1d(padding)
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(dropout)

        self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
                                 self.conv2, self.chomp2, self.relu2, self.dropout2)
        self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
        self.relu = nn.ReLU()
        self.init_weights()

    def init_weights(self):
        self.conv1.weight.data.normal_(0, 0.01)
        self.conv2.weight.data.normal_(0, 0.01)
        if self.downsample is not None:
            self.downsample.weight.data.normal_(0, 0.01)

    def forward(self, x):
        out = self.net(x)
        res = x if self.downsample is None else self.downsample(x)
        return self.relu(out + res)

最后就是TCN的主网络了:

class TemporalConvNet(nn.Module):
    def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
        super(TemporalConvNet, self).__init__()
        layers = []
        num_levels = len(num_channels)
        for i in range(num_levels):
            dilation_size = 2 ** i
            in_channels = num_inputs if i == 0 else num_channels[i-1]
            out_channels = num_channels[i]
            layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
                                     padding=(kernel_size-1) * dilation_size, dropout=dropout)]

        self.network = nn.Sequential(*layers)

    def forward(self, x):
        return self.network(x)

咋用的呢?就是num_inputs就是输入数据的通道数,一般就是1; num_channels应该是个列表,其他的np.array也行,比方说是[2,1]。那么整个TCN模型包含两个TemporalBlock,整个模型共有4个卷积层,第一个TemporalBlock的两个卷积层的膨胀系数\(dilation=2^0=1\),第二个TemporalBlock的两个卷积层的膨胀系数是\(dilation=2^1=2\).

没了,整个TCN挺简单的,如果之前学过PyTorch和图像处理的一些内容,然后用TCN来上手时间序列,效果会和LGM差不多。(根据最近做的一个比赛),没有跟Wavenet比较过,Wavenet的pytorch资源看起来怪复杂的,因为wavenet是用来处理音频生成的,会更加复杂一点。

总之TCN就这么多,谢谢大家。

LSTM的备胎,用卷积处理时间序列——TCN与因果卷积(理论+Python实践)

标签:图像   不用   mod   链接   nsa   -o   utils   问题   ado   

原文地址:https://www.cnblogs.com/PythonLearner/p/12925732.html


评论


亲,登录后才可以留言!