python学习-数据清洗

2021-01-20 23:16

阅读:520

标签:perm   color   str   fir   replace   pattern   transform   scribe   ref   

1、handling missing Data

string_data = pd.Series([aardvark, artichoke, np.nan, avocado])
string_data.isnull()
string_data[0] = None
#dropna fillna isnull notnull

from numpy import nan as NA
string_data[string_data.notnull()]

data = pd.DataFrame([[1., 6.5, 3.], [1., NA, NA], [NA, NA, NA], [NA, 6.5, 3.]])
data.dropna(how=all)
data.dropna(axis=1, how=all)

df = pd.DataFrame(np.random.randn(7, 3))
df.iloc[:4, 1] = NA
df.iloc[:2, 2] = NA
df.dropna()
df.dropna(thresh=2)

#填充缺失值

df.fillna(0)
df.fillna({1: 0.5, 2: 0})
_ = df.fillna(0, inplace=True)#修改原来对象

df = pd.DataFrame(np.random.randn(6, 3))
df.iloc[2:, 1] = NA
df.iloc[4:, 2] = NA

df.fillna(method=ffill)
df.fillna(method=ffill, limit=2)

2、数据转换

#去掉重复值
data = pd.DataFrame({k1: [one, two] * 3 + [two],k2: [1, 1, 2, 3, 3, 4, 4]})
data.duplicated()
data.drop_duplicates()
data[v1] = range(7)
data.drop_duplicates([k1])
data.drop_duplicates([k1, k2], keep=last)

#使用函数和映射转换Map

data = pd.DataFrame({food: [bacon, pulled pork, bacon, Pastrami, corned beef, Bacon,
pastrami, honey ham, nova lox], ounces: [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})
meat_to_animal = { bacon: pig, pulled pork: pig, pastrami: cow, corned beef: cow, honey ham: pig, nova lox: salmon
}
lowercased = data[food].str.lower()
data[animal] = lowercased.map(meat_to_animal)
data[food].map(lambda x: meat_to_animal[x.lower()])

#Replacing Values
data = pd.Series([1., -999., 2., -999., -1000., 3.])
data.replace(-999, np.nan)
data.replace([-999,-1000],np.nan)
data.replace([-999,-1000],[np.nan,0])
data.replace({-999:np.nan,-1000:0})

#Renaming Axis Indexes
data = pd.DataFrame(np.arange(12).reshape((3, 4)),
                    index=[Ohio, Colorado, New York],
                    columns=[one, two, three, four])
transform = lambda x: x[:4].upper()
data.index.map(transform)
data.index = data.index.map(transform)
data.rename(index=str.title, columns=str.upper)
data.rename(index={OHIO: INDIANA},columns={three: peekaboo})
data.rename(index={OHIO: INDIANA}, inplace=True)

#离散化和分箱
ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
bins = [18, 25, 35, 60, 100]
cats = pd.cut(ages,bins)
cats.codes
cats.categories
pd.value_counts(cats)
pd.cut(ages,[18,26,36,61,100],right=False)
group_names = [Youth, YoungAdult, MiddleAged, Senior]
pd.cut(ages,bins,labels=group_names)

data = np.random.rand(20)
pd.cut(data, 4, precision=2)

data = np.random.randn(1000)
 cats = pd.qcut(data, 4)

#Detecting and Filtering Outliers
data = pd.DataFrame(np.random.randn(1000, 4))
data.describe()
col = data[2]
col[np.abs(col)>3]
data[(np.abs(data) > 3).any(1)]
data[np.abs(data) > 3] = np.sign(data) * 3
data.describe()
np.sign(data).head()

#随机排列
df = pd.DataFrame(np.arange(5 * 4).reshape((5, 4)))
sampler = np.random.permutation(5)
df.take(sampler)
df.sample(n=3) #随机取3行

choices = pd.Series([5, 7, -1, 6, 4])
draws = choices.sample(n=10, replace=True)

#Computing Indicator/Dummy Variables
df = pd.DataFrame({key: [b, b, a, c, a, b], data1: range(6)})
pd.get_dummies(df[key])
dummies = pd.get_dummies(df[key], prefix=key)
df_with_dummy = df[[data1]].join(dummies)

np.random.seed(12345)
values = np.random.rand(10)
bins = [0, 0.2, 0.4, 0.6, 0.8, 1]
pd.get_dummies(pd.cut(values, bins))

3、String Object Methods

val = a,b, guido
val.split(,)
pieces = [x.strip() for x in val.split(,)]
first, second, third = pieces
first + :: + second + :: + third #等价于下面表达式
::.join(pieces)

guido in val
val.index(,) #如果不存在会报错
val.find(:) #
val.count(,)

val.replace(,, ::)
val.replace(,, ‘‘)

#endswith  startswith rfind strip rstrip lstrip lower upper casefold ljust rjust

4、正则表达式

import re
text = "foo bar\t baz \tqux"
re.split(\s+, text) #先编译后调用split方法,等价于下面的方法

regex = re.compile(\s+)
regex.split(text)
regex.findall(text)


text = """Dave dave@google.com Steve steve@gmail.com
Rob rob@gmail.com
Ryan ryan@yahoo.com
"""
pattern = r[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}
regex = re.compile(pattern, flags=re.IGNORECASE)
regex.findall(text)

m = regex.search(text) #返回第一个匹配类型
text[m.start():m.end()]

print(regex.match(text)) #匹配是否发生在开始位置

print(regex.sub(REDACTED, text)) #通过替换匹配的值返回一个新值

pattern = r([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})
regex = re.compile(pattern, flags=re.IGNORECASE)
m = regex.match(wesm@bright.net)
regex.findall(text)
print(regex.sub(rUsername: \1, Domain: \2, Suffix: \3, text))

5、Vectorized String Functions in pandas

data = {Dave: dave@google.com, Steve: steve@gmail.com,Rob: rob@gmail.com, Wes: np.nan}
data = pd.Series(data)
data.isnull()

data.str.contains(gmail)
pattern=([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\\.([A-Z]{2,4})

data.str.findall(pattern, flags=re.IGNORECASE)
matches = data.str.match(pattern, flags=re.IGNORECASE)
matches.str.get(1)

 

python学习-数据清洗

标签:perm   color   str   fir   replace   pattern   transform   scribe   ref   

原文地址:https://www.cnblogs.com/excellence/p/12896956.html


评论


亲,登录后才可以留言!