算法图解学习系列--第4章--快速排序

2021-01-23 01:16

阅读:645

标签:运行时   divide   简单的   c语言   基线   nta   ret   连接   部分   

目录
  • 分而治之
  • 计算数字数组的和
  • 快速排序
    • python实现快速排序
    • 时间复杂度

分而治之

D&C(divide and conquer )是一种著名的递归式问题解决方法。

D&C的工作原理

  • 找出简单的基线条件;

  • 确定如何缩小问题的规模,使其符合基线条件。

计算数字数组的和

实现方法1

pirint(sum([1, 2, 3]))
# 或者
def sumd(array):
    if len(array) = 0:
        return None
    
    total = 0
    for i in array:
        total += i
    return total
pirint(sumd([1, 2, 3]))

实现方法2

示意图

技术图片
def sumd(array):
    # 首次输入为空列表,直接返回None
    # 有长度的数组是依次减少的,因此不会减少到空列表
    if len(array) == 0:
        return None
    elif len(array) == 1:
        return array[0]
    else:
        return array[0] + sumd(array[1:])
print(sumd([1, 2, 3]))

print(sumd([]))

快速排序

快速排序是一种常用的排序算法,比选择排序快得多。例如,C语言标准库中的函数qsort实现的就是快速排序。快速排序也使用了D&C。

但是,这种排序用了递归,故元素个数受限于栈深。

技术图片

处理过程简单理解

  1. 对于数组[5, 2, 1, 4, 3]排序,选取第一个值作为基准值,将小于等于基准值的部分放在一个列表less中,大于等于基准值放在列表greater中

  2. less 中的元素小于等于基准值,故只要less中的元素排序后,可以和基准值连接上;对于less这个小数组再利用第1步进行排序

  3. 同样的,greater的排序和第2步的less相同。

这里找准基准条件是比较重要的一点

python实现快速排序

def quick_sort(array):
    if len(array)  pivot]
        return quick_sort(less) + [pivot] + quick_sort(greater)

print(quick_sort([10, 2, 7, 4, 1, 2]))

时间复杂度

最佳情况

技术图片

在这个示例中,层数为O(log n)(用技术术语说,调用栈的高度为O(log n)),而每层需要的时间为O(n)。因此整个算法需要的时间为O(n) * O(log n)=O(n log n)。

在最糟情况下,有O(n)层,因此该算法的运行时间为O(n) * O(n)=O(n2)。

书上说这里的最佳情况也是平均情况,这里还是不太理解。

算法图解学习系列--第4章--快速排序

标签:运行时   divide   简单的   c语言   基线   nta   ret   连接   部分   

原文地址:https://www.cnblogs.com/hiyang/p/12885836.html


评论


亲,登录后才可以留言!