11.分类与监督学习,朴素贝叶斯分类算法
2021-01-23 11:15
标签:学习 分类预测 类型 预测 利用 cross 朴素贝叶斯 决策 建立 1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 简述什么是监督学习与无监督学习。 2.朴素贝叶斯分类算法 实例 利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。 有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数 目标分类变量疾病: –心梗 –不稳定性心绞痛 新的实例:–(性别=‘男’,年龄
最可能是哪个疾病? 上传手工演算过程。 性别 年龄 KILLP 饮酒 吸烟 住院天数 疾病 1 男 >80 1 是 是 7-14 心梗 2 女 70-80 2 否 是
心梗 3 女 70-81 1 否 否
不稳定性心绞痛 4 女
1 否 是 >14 心梗 5 男 70-80 2 是 是 7-14 心梗 6 女 >80 2 否 否 7-14 心梗 7 男 70-80 1 否 否 7-14 心梗 8 女 70-80 2 否 否 7-14 心梗 9 女 70-80 1 否 否
心梗 10 男
1 否 否 7-14 心梗 11 女 >80 3 否 是
心梗 12 女 70-80 1 否 是 7-14 心梗 13 女 >80 3 否 是 7-14 不稳定性心绞痛 14 男 70-80 3 是 是 >14 不稳定性心绞痛 15 女
3 否 否
心梗 16 男 70-80 1 否 否 >14 心梗 17 男
1 是 是 7-14 心梗 18 女 70-80 1 否 否 >14 心梗 19 男 70-80 2 否 否 7-14 心梗 20 女
3 否 否
不稳定性心绞痛 3.使用朴素贝叶斯模型对iris数据集进行花分类。 尝试使用3种不同类型的朴素贝叶斯: 并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。 1.分类简单来说,就是根据文本的特征或属性,划分到已有的类别中。也就是说,这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。而聚类不知道数据会分为几类,通过聚类分析将数据或者说用户聚合成几个群体,那就是聚类了。聚类不需要对数据进行训练和学习。 有监督学习:对具有标记的训练样本进行学习,以尽可能对训练样本集外的数据进行分类预测。 无监督学习:对未标记的样本进行训练学习 2. 设X{x1,x2,x3,x4,x5,x6}为影响疾病的因素 Y{y1,y2}为疾病类型,y1为心梗、y2为不稳定性心绞痛 则P(y1)=16/20,P(y2)=4/20,P(X)=1 P(y1|X)=P(X|y1)P(y1)/P(X)=P(x1|y1)P(x2|y1)P(x3|y1)P(x4|y1)P(x5|y1)P(x6|y1)P(y1)/P(X)=7/16*4/16*9/16*3/16*7/16*4/16*16/20/1=0.1009% P(y2|X)=P(X|y2)P(y2)/P(X)=P(x1|y2)P(x2|y2)P(x3|y2)P(x4|y2)P(x5|y2)P(x6|y2)P(y2)/P(X)=1/4*1/4*1/4*1/4*2/4*2/4*4/20/1=0.0195% 根据上述结果:最可能是心梗 3 . 11.分类与监督学习,朴素贝叶斯分类算法 标签:学习 分类预测 类型 预测 利用 cross 朴素贝叶斯 决策 建立 原文地址:https://www.cnblogs.com/du162/p/12881401.html
下一篇:java 基础提炼
文章标题:11.分类与监督学习,朴素贝叶斯分类算法
文章链接:http://soscw.com/index.php/essay/45861.html