【Flink】DataStream API 教程

2021-01-28 00:13

阅读:402

标签:sar   ade   static   打开   现在   sch   gate   r文件   设置   

设置一个maven项目

使用maven 创建一个flink项目,使用下面命令:

$ mvn archetype:generate     -DarchetypeGroupId=org.apache.flink     -DarchetypeArtifactId=flink-quickstart-java     -DarchetypeVersion=1.9.0     -DgroupId=wiki-edits     -DartifactId=wiki-edits     -Dversion=0.1     -Dpackage=wikiedits     -DinteractiveMode=false

可以根据需要编辑groupid artifactId 和 package,目录项目结构如下:

$ tree wiki-edits
wiki-edits/
├── pom.xml
└── src
    └── main
        ├── java
        │   └── wikiedits
        │       ├── BatchJob.java
        │       └── StreamingJob.java
        └── resources
            └── log4j.propertie

这是项目已经创建了一些样例代码,我们可以直接删除这些样例代码结构在src/main/java

$ rm wiki-edits/src/main/java/wikiedits/*.java

最后我们需要添加一些我们程序需要的依赖,在pom.xml中添加:

org.apache.flink
        flink-java
        ${flink.version}org.apache.flink
        flink-streaming-java_2.11
        ${flink.version}org.apache.flink
        flink-clients_2.11
        ${flink.version}org.apache.flink
        flink-connector-wikiedits_2.11
        ${flink.version}

写一个flink程序

打开IDE,添加一个文件src/main/java/wikiedits/WikipediaAnalysis.java:

package wikiedits;

public class WikipediaAnalysis {

    public static void main(String[] args) throws Exception {

    }
}

这只是一个基础的main函数,接着我们的第一步就是创建一个环境变量StreamExecutionEnvironment (如果是批处理的话就创建一个ExecutionEnvironment),这个可以用来读取外部文件资源和用来执行程序,所以我们现在main函数中添加这个方法。

StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();

接下来我们再创一个source,来接受Wikipedia 的IRC log

DataStream edits = see.addSource(new WikipediaEditsSource());

这里创建了一个 WikipediaEditEvent 的datastream来帮助我们进一步处理程序。第一步我们需要指明userName为分组key。

KeyedStream keyedEdits = edits
    .keyBy(new KeySelector() {
        @Override
        public String getKey(WikipediaEditEvent event) {
            return event.getUser();
        }
    });

接着我们需要指定我们想要的结果在一个窗口的输出的时间大小,和做一些聚合操作。本示例展示的是在时间窗口内每个用户增加或者删除字节的数量,一个窗口在一个流里面执行计算,在无限流的数据流中我们需要设置窗口,在示例中窗口设置为5s。

DataStream> result = keyedEdits
    .timeWindow(Time.seconds(5))
    .aggregate(new AggregateFunction, Tuple2>() {
        @Override
        public Tuple2 createAccumulator() {
            return new Tuple2("", 0L);
        }

        @Override
        public Tuple2 add(WikipediaEditEvent value, Tuple2 accumulator) {
            accumulator.f0 = value.getUser();
            accumulator.f1 += value.getByteDiff();
            return accumulator;
        }

        @Override
        public Tuple2 getResult(Tuple2 accumulator) {
            return accumulator;
        }

        @Override
        public Tuple2 merge(Tuple2 a, Tuple2 b) {
            return new Tuple2(a.f0, a.f1 + b.f1);
        }
    });

最后打印结果并提交执行

result.print();

see.execute();

所有的操作,例如:建立一个source,transformations,sink,都是在内部建立有向图,
只有我们执行execute()的时候,这些操作图才会在我们本机或者集群上执行。

完整的代码如下:

package wikiedits;

import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditEvent;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditsSource;

public class WikipediaAnalysis {

  public static void main(String[] args) throws Exception {

    StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();

    DataStream edits = see.addSource(new WikipediaEditsSource());

    KeyedStream keyedEdits = edits
      .keyBy(new KeySelector() {
        @Override
        public String getKey(WikipediaEditEvent event) {
          return event.getUser();
        }
      });

    DataStream> result = keyedEdits
      .timeWindow(Time.seconds(5))
      .aggregate(new AggregateFunction, Tuple2>() {
        @Override
        public Tuple2 createAccumulator() {
          return new Tuple2("", 0L);
        }

        @Override
        public Tuple2 add(WikipediaEditEvent value, Tuple2 accumulator) {
          accumulator.f0 = value.getUser();
          accumulator.f1 += value.getByteDiff();
          return accumulator;
        }

        @Override
        public Tuple2 getResult(Tuple2 accumulator) {
          return accumulator;
        }

        @Override
        public Tuple2 merge(Tuple2 a, Tuple2 b) {
          return new Tuple2(a.f0, a.f1 + b.f1);
        }
      });

    result.print();

    see.execute();
  }
}

可以是用maven执行完成的程序,在命令行中:

$ mvn clean package
$ mvn exec:java -Dexec.mainClass=wikiedits.WikipediaAnalysis

输出如下

1> (Fenix down,114)
6> (AnomieBOT,155)
8> (BD2412bot,-3690)
7> (IgnorantArmies,49)
3> (Ckh3111,69)
5> (Slade360,0)
7> (Narutolovehinata5,2195)
6> (Vuyisa2001,79)
4> (Ms Sarah Welch,269)
4> (KasparBot,-245)

每行前面的数字代表哪个并执行器接受并执行了任务。

练习:在集群上运行并写入kafka

请先在本机搭建本地集群环境并且安装kafka

我们需要添加kafka-connector 并且sink到kafka中,第一步,我们需要在pom.xml添加相关依赖

org.apache.flink
    flink-connector-kafka-0.11_2.11
    ${flink.version}

接下来,我们需要修改我们的程序。将print sink替换成kafka sink,程序如下:

result
    .map(new MapFunction, String>() {
        @Override
        public String map(Tuple2 tuple) {
            return tuple.toString();
        }
    })
    .addSink(new FlinkKafkaProducer011("localhost:9092", "wiki-result", new SimpleStringSchema()));

添加import依赖如下:

import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.functions.MapFunction;

使用maven编译出jar包:

$ mvn clean package

生成的jar文件地址在 target/wiki-edits-0.1.jar

现在我们需要启动flink集群

$ cd my/flink/directory
$ bin/start-cluster.sh

同时也需要创建一个kafka topic,保证我们的程序能够写入金去:

$ cd my/kafka/directory
$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic wiki-results

现在我们可以准备在我们本地flink集群中运行jar文件

$ cd my/flink/directory
$ bin/flink run -c wikiedits.WikipediaAnalysis path/to/wikiedits-0.1.jar

输出的日志如下:

03/08/2016 15:09:27 Job execution switched to status RUNNING.
03/08/2016 15:09:27 Source: Custom Source(1/1) switched to SCHEDULED
03/08/2016 15:09:27 Source: Custom Source(1/1) switched to DEPLOYING
03/08/2016 15:09:27 Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, AggregateFunction$3, PassThroughWindowFunction) -> Sink: Print to Std. Out (1/1) switched from CREATED to SCHEDULED
03/08/2016 15:09:27 Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, AggregateFunction$3, PassThroughWindowFunction) -> Sink: Print to Std. Out (1/1) switched from SCHEDULED to DEPLOYING
03/08/2016 15:09:27 Window(TumblingProcessingTimeWindows(5000), ProcessingTimeTrigger, AggregateFunction$3, PassThroughWindowFunction) -> Sink: Print to Std. Out (1/1) switched from DEPLOYING to RUNNING
03/08/2016 15:09:27 Source: Custom Source(1/1) switched to RUNNING

可以登录http://localhost:8081查看任务运行的情况,我们可以看到有两个operation,出于性能考虑,window之后的操作会被折叠成一个,被称为chaining

可以使用kafka custom命令观察kafka的数据

bin/kafka-console-consumer.sh  --zookeeper localhost:2181 --topic wiki-result

【Flink】DataStream API 教程

标签:sar   ade   static   打开   现在   sch   gate   r文件   设置   

原文地址:https://www.cnblogs.com/yankang/p/11915089.html


评论


亲,登录后才可以留言!