Java之集合
2021-02-03 13:16
标签:head 参与 是什么 finally 对象创建 常用方法 利用 详细 存储位置 集合、数组都是对多个数据进行存储操作的结构,简称Java容器。 说明:此时的存储,主要指的是内存层面的存储,不涉及到持久化的存储(.txt,.jpg,.avi,数据库中) 一旦初始化以后,其长度就确定了。 数组一旦定义好,其元素的类型也就确定了。我们也就只能操作指定类型的数据了。 比如:String[] arr;int[] arr1;Object[] arr2; 解决数组存储数据方面的弊端。 Java集合可分为Collection和Map两种体系 图示: 代码示例:一、集合与数组
1. 集合与数组存储数据概述:
2. 数组存储的特点:
3. 数组存储的弊端:佳木斯SEO
4. 集合存储的优点:
5. 集合的分类
6. 集合的框架结构
|----Collection接口:单列集合,用来存储一个一个的对象
|----List接口:存储有序的、可重复的数据。 -->“动态”数组
|----ArrayList:作为List接口的主要实现类,线程不安全的,效率高;底层采用Object[] elementData数组存储
|----LinkedList:对于频繁的插入删除操作,使用此类效率比ArrayList效率高底层采用双向链表存储
|----Vector:作为List的古老实现类,线程安全的,效率低;底层采用Object[]数组存储
|----Set接口:存储无序的、不可重复的数据 -->数学概念上的“集合”
|----HashSet:作为Set接口主要实现类;线程不安全;可以存null值
|----LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加顺序遍历;对于频繁的遍历操作,LinkedHashSet效率高于HashSet.
|----TreeSet:可以按照添加对象的指定属性,进行排序。
|----Map:双列数据,存储key-value对的数据 ---类似于高中的函数:y = f(x)
|----HashMap:作为Map的主要实现类;线程不安全的,效率高;存储null的key和value
|----LinkedHashMap:保证在遍历map元素时,可以照添加的顺序实现遍历。
原因:在原的HashMap底层结构基础上,添加了一对指针,指向前一个和后一个元素。
对于频繁的遍历操作,此类执行效率高于HashMap。
|----TreeMap:保证照添加的key-value对进行排序,实现排序遍历。此时考虑key的自然排序或定制排序
底层使用红黑树
|----Hashtable:作为古老的实现类;线程安全的,效率低;不能存储null的key和value
|----Properties:常用来处理配置文件。key和value都是String类型
二、Collection接口
1. 单列集合框架结构
|----Collection接口:单列集合,用来存储一个一个的对象
|----List接口:存储有序的、可重复的数据。 -->“动态”数组
|----ArrayList:作为List接口的主要实现类,线程不安全的,效率高;底层采用Object[] elementData数组存储
|----LinkedList:对于频繁的插入删除操作,使用此类效率比ArrayList效率高底层采用双向链表存储
|----Vector:作为List的古老实现类,线程安全的,效率低;底层采用Object[]数组存储
|----Set接口:存储无序的、不可重复的数据 -->数学概念上的“集合”
|----HashSet:作为Set接口主要实现类;线程不安全;可以存null值
|----LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加顺序遍历;对于频繁的遍历操作,LinkedHashSet效率高于HashSet.
|----TreeSet:可以按照添加对象的指定属性,进行排序。
2. Collection接口常用方法:
- hashCode()
- iterator():返回迭代器对象,用于集合遍历
@Test
public void test1() {
Collection collection = new ArrayList();
//1.add(Object e):将元素添加到集合中
collection.add("ZZ");
collection.add("AA");
collection.add("BB");
collection.add(123);
collection.add(new Date());
//2.size():获取添加元素的个数
System.out.println(collection.size());//5
//3.addAll(Collection coll1):将coll1集合中的元素添加到当前集合中
Collection collection1 = new ArrayList();
collection1.add("CC");
collection1.add(213);
collection.addAll(collection1);
System.out.println(collection.size());//9
//调用collection1中的toString()方法输出
System.out.println(collection);//[ZZ, AA, BB, 123, Tue Apr 28 09:22:34 CST 2020, 213, 213]
//4.clear():清空集合元素
collection1.clear();
System.out.println(collection1.size());//0
System.out.println(collection1);//[]
//5.isEmpty():判断当前集合是否为空
System.out.println(collection1.isEmpty());//true
}
@Test
public void test2() {
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Tom", 23));
coll.add(new Person("Jarry", 34));
coll.add(false);
//6.contains(Object obj):判断当前集合中是否包含obj
//判断时需要调用obj对象所在类的equals()方法
System.out.println(coll.contains(123));//true
System.out.println(coll.contains(new Person("Tom", 23)));//true
System.out.println(coll.contains(new Person("Jarry", 23)));//false
//7.containsAll(Collection coll1):判断形参coll1中的元素是否都存在当前集合中
Collection coll1 = Arrays.asList(123, 4566);
System.out.println(coll.containsAll(coll1));//flase
//8.remove(Object obj):从当前集合中移除obj元素
coll.remove(123);
System.out.println(coll);//[456, Person{name=‘Tom‘, age=23}, Person{name=‘Jarry‘, age=34}, false]
//9.removeAll(Collection coll1):差集:从当前集合中和coll1中所有的元素
Collection coll2 = Arrays.asList(123, 456, false);
coll.removeAll(coll2);
System.out.println(coll);//[Person{name=‘Tom‘, age=23}, Person{name=‘Jarry‘, age=34}]
}
@Test
public void test3() {
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Tom", 23));
coll.add(new Person("Jarry", 34));
coll.add(false);
//10.retainAll(Collection coll1):交集:获取当前集合和coll1集合的交集,并返回给当前集合
Collection coll1 = Arrays.asList(123, 345, 456);
boolean b = coll.retainAll(coll1);
System.out.println(b);//true
System.out.println(coll);//[123, 456]
//11.equals(Object obj):返回true需要当前集合和形参集合的元素相同
Collection coll2 = new ArrayList();
coll2.add(123);
coll2.add(456);
System.out.println(coll.equals(coll2));//true
//12.hashCode():返回当前对象的哈希值
System.out.println(coll.hashCode());//5230
//13.集合--->数组:toArray()
Object[] array = coll.toArray();
for (Object obj : array) {
System.out.println(obj);
}
//14.数组--->集合:调用Arrays类的静态方法asList()
Listint[]> ints = Arrays.asList(new int[]{123, 345});
System.out.println(ints.size());//1
List
3. Collection集合与数组间的转换
//集合 --->数组:toArray()
Object[] arr = coll.toArray();
for(int i = 0;i //拓展:数组 --->集合:调用Arrays类的静态方法asList(T ... t)
List list = Arrays.asList(new String[]{"AA", "BB", "CC"});
System.out.println(list);
List arr1 = Arrays.asList(new int[]{123, 456});
System.out.println(arr1.size());//1
List arr2 = Arrays.asList(new Integer[]{123, 456});
System.out.println(arr2.size());//2
使用Collection集合存储对象,要求对象所属的类满足:
向Collection接口的实现类的对象中添加数据obj时,要求obj所在类要重写equals()。
三、Iterator接口与foreach循环
1. 遍历Collection的两种方式:
① 使用迭代器Iterator ② foreach循环(或增强for循环)
2. java.utils包下定义的迭代器接口:Iterator
2.1说明:
Iterator对象称为迭代器(设计模式的一种),主要用于遍历 Collection 集合中的元素。 GOF给迭代器模式的定义为:提供一种方法访问一个容器(container)对象中各个元素,而又不需暴露该对象的内部细节。迭代器模式,就是为容器而生。
2.2作用:
遍历集合Collectiton元素
2.3如何获取实例:
coll.iterator()返回一个迭代器实例
2.4遍历的代码实现:
Iterator iterator = coll.iterator();
//hasNext():判断是否还下一个元素
while(iterator.hasNext()){
//next():①指针下移 ②将下移以后集合位置上的元素返回
System.out.println(iterator.next());
}
2.5图示说明:
2.6 iterator中remove()方法的使用:
- 测试Iterator中的remove()
- 如果还未调用next()或在上一次调用 next 方法之后已经调用了 remove 方法,再调用remove都会报IllegalStateException。
- 内部定义了remove(),可以在遍历的时候,删除集合中的元素。此方法不同于集合直接调用remove()
代码示例:
@Test
public void test3(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add("Tom"
);
coll.add(false);
//删除集合中"Tom"
Iterator iterator = coll.iterator();
while (iterator.hasNext()){
// iterator.remove();
Object obj = iterator.next();
if("Tom".equals(obj)){
iterator.remove();
// iterator.remove();
}
}
//将指针重新放到头部,遍历集合
iterator = coll.iterator();
while (iterator.hasNext()){
System.out.println(iterator.next());
}
}
3. JDK 5.0新特性--增强for循环:(foreach循环)
3.1 遍历集合举例:
@Test
public void test1(){
Collection coll = new ArrayList();
coll.add(123);
coll.add(456);
coll.add(new Person("Jerry",20));
coll.add(new String("Tom"));
coll.add(false);
//for(集合元素的类型 局部变量 : 集合对象)
for(Object obj : coll){
System.out.println(obj);
}
}
说明:内部仍然调用了迭代器。
3.2. 遍历数组举例:
@Test
public void test2(){
int[] arr = new int[]{1,2,3,4,5,6};
//for(数组元素的类型 局部变量 : 数组对象)
for(int i : arr){
System.out.println(i);
}
}
四、Collection子接口:List接口
1. 存储的数据特点:
存储序有序的、可重复的数据。
- 鉴于Java中数组用来存储数据的局限性,我们通常使用List替代数组
- List集合类中元素有序、且可重复,集合中的每个元素都有其对应的顺序索引。
- List容器中的元素都对应一个整数型的序号记载其在容器中的位置,可以根据序号存取容器中的元素。
- JDK AP中List接口的实现类常用的有:ArrayList、LinkedList和 Vector.
2. 常用方法:
List除了从 Collection集合继承的方法外,List集合里添加了一些根据索引来操作集合元素的方法。
- void add(int index, Object ele):在index位置插入ele元素
- boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
- Object get(int index):获取指定index位置的元素
- int indexOf(Object obj):返回obj在集合中首次出现的位置
- int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置
- Object remove(int index):移除指定index位置的元素,并返回此元素
- Object set(int index, Object ele):设置指定index位置的元素为ele
- List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的子集合
总结:
- 增:add(Object obj)
- 删:remove(int index) / remove(Object obj)
- 改:set(int index, Object ele)
- 查:get(int index)
- 插:add(int index, Object ele)
- 长度:size()
- 遍历: ① Iterator迭代器方式② foreach(增强for循环) ③ 普通的循环
代码示例:
@Test
public void test2(){
ArrayList list = new ArrayList();
list.add(123);
list.add(456);
list.add("AA");
list.add(new Person("Tom",12));
list.add(456);
//int indexOf(Object obj):返回obj在集合中首次出现的位置。如果不存在,返回-1.
int index = list.indexOf(4567);
System.out.println(index);
//int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置。如果不存在,返回-1.
System.out.println(list.lastIndexOf(456));
//Object remove(int index):移除指定index位置的元素,并返回此元素
Object obj = list.remove(0);
System.out.println(obj);
System.out.println(list);
//Object set(int index, Object ele):设置指定index位置的元素为ele
list.set(1,"CC");
System.out.println(list);
//List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的左闭右开区间的子集合
List subList = list.subList(2, 4);
System.out.println(subList);
System.out.println(list);
}
@Test
public void test1(){
ArrayList list = new ArrayList();
list.add(123);
list.add(456);
list.add("AA");
list.add(new Person("Tom",12));
list.add(456);
System.out.println(list);
//void add(int index, Object ele):在index位置插入ele元素
list.add(1,"BB");
System.out.println(list);
//boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
List list1 = Arrays.asList(1, 2, 3);
list.addAll(list1);
// list.add(list1);
System.out.println(list.size());//9
//Object get(int index):获取指定index位置的元素
System.out.println(list.get(0));
}
3. 常用实现类:
3. 常用实现类:
|----Collection接口:单列集合,用来存储一个一个的对象
|----List接口:存储序的、可重复的数据。 -->“动态”数组,替换原的数组
|----ArrayList:作为List接口的主要实现类;线程不安全的,效率高;底层使用Object[] elementData存储
|----LinkedList:对于频繁的插入、删除操作,使用此类效率比ArrayList高;底层使用双向链表存储
|----Vector:作为List接口的古老实现类;线程安全的,效率低;底层使用Object[] elementData存储
3.1 ArrayList
- ArrayList是List接口的典型实现类、主要实现类
- 本质上,ArrayList是对象引用的一个”变长”数组
- Array Listi的JDK 1.8之前与之后的实现区别?
- JDK 1.7:ArrayList像饿汉式,直接创建一个初始容量为10的数组
- JDK 1.8:ArrayList像懒汉式,一开始创建一个长度为0的数组,当添加第一个元素时再创建一个始容量为10的数组
- Arrays.asList(...)方法返回的List集合,既不是 ArrayList实例,也不是Vector实例。Arrays.asList(...)返回值是一个固定长度的List集合
代码示例:
@Test
public void test1() {
Collection coll = new ArrayList();
coll.add(123);
coll.add(345);
coll.add(new User("Tom", 34));
coll.add(new User("Tom"));
coll.add(false);
//iterator()遍历ArrayList集合
Iterator iterator = coll.iterator();
while (iterator.hasNext()) {
System.out.println(iterator.next());
}
}
3.2 linkedList
-
对与对于频繁的插入和删除元素操作,建议使用LinkedList类,效率更高
-
新增方法:
- void addFirst(Object obj)
- void addLast(Object obj)
- Object getFirst()
- Object getlast)()
- Object removeFirst()
- Object removeLast()
-
Linkedlist:双向链表,内部没有声明数组,而是定义了Node类型的frst和last,用于记录首末元素。同时,定义内部类Node,作为 Linkedlist中保存数据的基本结构。Node除了保存数据,还定义了两个变量:
- prev变量记录前一个元素的位置
- next变量记录下一个元素的位置
代码示例:
@Test
public void test3(){
LinkedList linkedList = new LinkedList();
linkedList.add(123);
linkedList.add(345);
linkedList.add(2342);
linkedList.add("DDD");
linkedList.add("AAA");
Iterator iterator = linkedList.iterator();
while (iterator.hasNext()){
System.out.println(iterator.next());
}
}
4. 呼伦贝尔SEO源码分析(难点)
4.1 ArrayList的源码分析:
4.1.1 JDK 7.0情况下
ArrayList list = new ArrayList();//底层创建了长度是10的Object[]数组elementData
list.add(123);//elementData[0] = new Integer(123);
...
list.add(11);//如果此次的添加导致底层elementData数组容量不够,则扩容。
-
默认情况下,扩容为原来的容量的1.5倍,同时需要将原有数组中的数据复制到新的数组中。
-
结论:建议开发中使用带参的构造器:ArrayList list = new ArrayList(int capacity)
4.1.2 JDK 8.0中ArrayList的变化:
ArrayList list = new ArrayList();//底层Object[] elementData初始化为{}.并没创建长度为10的数组
list.add(123);//第一次调用add()时,底层才创建了长度10的数组,并将数据123添加到elementData[0]
...
后续的添加和扩容操作与JDK 7.0 无异。
4.1.3 小结:
JDK 7.0中的ArrayList的对象的创建类似于单例的饿汉式,而JDK 8.0中的ArrayList的对象的创建类似于单例的懒汉式,延迟了数组的创建,节省内存。
4.2 LinkedList的源码分析:
LinkedList list = new LinkedList(); //内部声明了Node类型的first和last属性,默认值为null
list.add(123);//将123封装到Node中,创建了Node对象。
//其中,Node定义为:体现了LinkedList的双向链表的说法
private static class NodeE> {
E item;
Node next;
Node prev;
Node(Node prev, E element, Node next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
4.3 Vector的源码分析:
- Vector是一个古老的集合,JDK 1.0就有了。大多数操作与ArrayList相同,区别在于Vector是线程安全的
- 在各种list中,最好把ArrayList作为缺省选择。当插入、删除频繁时,使用LinkedList;Vector总是比ArrayList慢,所以尽量避免选择使用。
- JDK 7.0和JDK 8.0中通过Vector()构造器创建对象时,底层都创建了长度为10的数组。
- 在扩容方面,默认扩容为原来的数组长度的2倍。
5. 存储的元素的要求:
添加的对象,所在的类要重写equals()方法
6. 面试题
请问 ArrayList/LinkedList/Vector的异同?谈谈你的理解?ArrayList底层是什么?扩容机制? Vector和 ArrayList的最大区别?
-
ArrayList和 Linkedlist的异同:
二者都线程不安全,相比线程安全的 Vector,ArrayList执行效率高。 此外,ArrayList是实现了基于动态数组的数据结构,Linkedlist基于链表的数据结构。对于随机访问get和set,ArrayList觉得优于Linkedlist,因为Linkedlist要移动指针。对于新增和删除操作add(特指插入)和 remove,Linkedlist比较占优势,因为 ArrayList要移动数据。
-
ArrayList和 Vector的区别:
Vector和ArrayList几乎是完全相同的,唯一的区别在于Vector是同步类(synchronized),属于强同步类。因此开销就比 ArrayList要大,访问要慢。正常情况下,大多数的Java程序员使用ArrayList而不是Vector,因为同步完全可以由程序员自己来控制。Vector每次扩容请求其大小的2倍空间,而ArrayList是1.5倍。Vector还有一个子类Stack.
五、Collection子接口:Set接口概述
- Set接口是Collection的子接口,set接口没有提供额外的方法
- Set集合不允许包含相同的元素,如果试把两个相同的元素加入同一个Set集合中,则添加操作失败。(多用于过滤操作,去掉重复数据)
- Set判断两个对象是否相同不是使用==运算符,而是根据equals()方法
1.存储的数据特点:
用于存放无序的、不可重复的元素
以HashSet为例说明:
- 无序性:不等于随机性。存储的数据在底层数组中并非照数组索引的顺序添加,而是根据数据的哈希值决定的。
- 不可重复性:保证添加的元素照equals()判断时,不能返回true.即:相同的元素只能添加一个。
2. 元素添加过程:(以HashSet为例)
我们向HashSet中添加元素a,首先调用元素a所在类的hashCode()方法,计算元素a的哈希值,此哈希值接着通过某种算法计算出在HashSet底层数组中的存放位置(即为:索引位置),判断
数组此位置上是否已经有元素:
- 如果此位置上没有其他元素,则元素a添加成功。 --->情况1
- 如果此位置上有其他元素b(或以链表形式存在的多个元素),则比较元素a与元素b的hash值:
- 如果hash值不相同,则元素a添加成功。--->情况2
- 如果hash值相同,进而需要调用元素a所在类的equals()方法:
- equals()返回true,元素a添加失败
- equals()返回false,则元素a添加成功。--->情况3
对于添加成功的情况2和情况3而言:元素a 与已经存在指定索引位置上数据以链表的方式存储。
JDK 7.0 :元素a放到数组中,指向原来的元素。
JDK 8.0 :原来的元素在数组中,指向元素a
总结:七上八下
HashSet底层:数组+链表的结构。(JDK 7.0以前)
3. 常用方法
Set接口中没额外定义新的方法,使用的都是Collection中声明过的方法。
3.1 重写hashCode()的基本方法
-
在程序运行时,同一个对象多次调用hashCode()方法应该返回相同的值。
-
当两个对象的equals()方法比较返回true时,这两个对象的 hashCode()方法的返回值也应相等。
-
对象中用作equals()方法比较的Field,都应该用来计算hashCode值。
3.2 重写equals()方法基本原则
-
以自定义的 Customer类为例,何时需要重写equals()?
-
当一个类有自己特有的“逻辑相等”概念,当改写equals()的时候,总是要改写 hash Code(),根据一个类的 equals方法(改写后),两个截然不同的实例有可能在逻辑上是相等的,但是,根据Object.hashCode()方法,它们仅仅是两个对象。
-
因此,违反了“相等的对象必须具有相等的散列码”.
-
结论:复写equals方法的时候一般都需要同时复写 hashCode方法。通常参与计算 hashCode的对象的属性也应该参与到equals()中进行计算。
3.3 Eclipse/IDEA工具里hashCode()重写
以Eclipse/DEA为例,在自定义类中可以调用工具自动重写equals()和hashCode() 问题:为什么用 Eclipse/IDEA复写 hash Code方法,有31这个数字?
-
选择系数的时候要选择尽量大的系数。因为如果计算出来的hash地址越大,所谓的“冲突”就越少,查找起来效率也会提高。(减少冲突)
-
并且31只占用5bits,相乘造成数据溢出的概率较小。
-
31可以由i*31==(
-
31是一个素数,素数作用就是如果我用一个数字来乘以这个素数,那么最终出来的结果只能被素数本身和被乘数还有1来整除!(减少冲突)
代码示例:
@Override
public boolean equals(Object o) {
System.out.println("User equals()....");
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
User user = (User) o;
if (age != user.age) return false;
return name != null ? name.equals(user.name) : user.name == null;
}
@Override
public int hashCode() { //return name.hashCode() + age;
int result = name != null ? name.hashCode() : 0;
result = 31 * result + age;
return result;
}
4. 常用实现类:
|----Collection接口:单列集合,用来存储一个一个的对象
|----Set接口:存储无序的、不可重复的数据 -->高中讲的“集合”
|----HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值
|----LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历,对于频繁的遍历操作,LinkedHashSet效率高于HashSet.
|----TreeSet:可以按照添加对象的指定属性,进行排序。
4.1 HashSet
- Hashset是Set接口的典型实现,大多数时候使用Set集合时都使用这个实现类。
- HashSet按Hash算法来存储集合中的元素,因此具有很好的存取、查找、删除性能。
- HashSet具有以下特点:
- 不能保证元素的排列顺序
- HashSet不是线程安全的
- 集合元素可以是nul
- HashSet集合判断两个元素相等的标准:两个对象通过hashCode()方法比较相等,并且两个对象的equals()方法返回值也相等。
- 对于存放在Set容器中的对象,对应的类一定要重写equals()和hashCode(Object obj)方法,以实现对象相等规则。即:“相等的对象必须具有相等的散列码”
代码示例:
@Test
//HashSet使用
public void test1(){
Set set = new HashSet();
set.add(454);
set.add(213);
set.add(111);
set.add(123);
set.add(23);
set.add("AAA");
set.add("EEE");
set.add(new User("Tom",34));
set.add(new User("Jarry",74));
Iterator iterator = set.iterator();
while (iterator.hasNext()){
System.out.println(iterator.next());
}
}
4.2 LinkedHashSet
-
LinkedhashSet是HashSet的子类
-
LinkedhashSet根据元素的hashCode值来决定元素的存储位置但它同时使用双向链表维护元素的次序,这使得元素看起来是以插入顺序保存的。
-
LinkedhashSet插入性能略低于HashSet,但在迭代访问Set里的全部元素时有很好的性能。
-
LinkedhashSet不允许集合元素重复。
图示:
代码示例:
@Test
//LinkedHashSet使用
public void test2(){
Set set = new LinkedHashSet();
set.add(454);
set.add(213);
set.add(111);
set.add(123);
set.add(23);
set.add("AAA");
set.add("EEE");
set.add(new User("Tom",34));
set.add(new User("Jarry",74));
Iterator iterator = set.iterator();
while (iterator.hasNext()){
System.out.println(iterator.next());
}
}
4.3 TreeSet
-
Treeset是SortedSet接口的实现类,TreeSet可以确保集合元素处于排序状态。
-
TreeSet底层使用红黑树结构存储数据
-
新增的方法如下:(了解)
-
Comparator comparator()
-
Object first()
-
Object last()
-
Object lower(object e)
-
Object higher(object e)
-
SortedSet subSet(fromElement, toElement)
-
SortedSet headSet(toElement)
-
SortedSet tailSet(fromElement)
-
-
TreeSet两种排序方法:自然排序和定制排序。默认情况下,TreeSet采用自然排序。
红黑树图示:
红黑树的特点:有序,查询效率比List快
详细介绍:https://www.cnblogs.com/LiaHon/p/11203229.html
代码示例:
@Test
public void test1(){
Set treeSet = new TreeSet();
treeSet.add(new User("Tom",34));
treeSet.add(new User("Jarry",23));
treeSet.add(new User("mars",38));
treeSet.add(new User("Jane",56));
treeSet.add(new User("Jane",60));
treeSet.add(new User("Bruce",58));
Iterator iterator = treeSet.iterator();
while (iterator.hasNext()){
System.out.println(iterator.next());
}
}
5. 存储对象所在类的要求:
5.1HashSet/LinkedHashSet:
- 要求:向Set(主要指:HashSet、LinkedHashSet)中添加的数据,其所在的类一定要重写hashCode()和equals()
- 要求:重写的hashCode()和equals()尽可能保持一致性:相等的对象必须具有相等的散列码
重写两个方法的小技巧:对象中用作 equals() 方法比较的 Field,都应该用来计算 hashCode 值。
5.2 TreeSet:
-
自然排序中,比较两个对象是否相同的标准为:compareTo()返回0.不再是equals().
-
定制排序中,比较两个对象是否相同的标准为:compare()返回0.不再是equals().
6. TreeSet的使用
6.1 使用说明:
-
向TreeSet中添加的数据,要求是相同类的对象。
-
两种排序方式:自然排序(实现Comparable接口 和 定制排序(Comparator)
6.2 常用的排序方式:
方式一:自然排序
-
自然排序:TreeSet会调用集合元素的compareTo(object obj)方法来比较元素之间的大小关系,然后将集合元素按升序(默认情况)排列
-
如果试图把一个对象添加到Treeset时,则该对象的类必须实现Comparable接口。
- 实现Comparable的类必须实现compareTo(Object obj)方法,两个对象即通过compareTo(Object obj)方法的返回值来比较大小
-
Comparable的典型实现:
-
BigDecimal、BigInteger以及所有的数值型对应的包装类:按它们对应的数值大小进行比较
-
Character:按字符的unic!ode值来进行比较
-
Boolean:true对应的包装类实例大于fase对应的包装类实例
-
String:按字符串中字符的unicode值进行比较
-
Date、Time:后边的时间、日期比前面的时间、日期大
-
-
向TreeSet中添加元素时,只有第一个元素无须比较compareTo()方法,后面添加的所有元素都会调用compareTo()方法进行比较。
-
因为只有相同类的两个实例才会比较大小,所以向 TreeSet中添加的应该是同一个类的对象。 对于TreeSet集合而言,它判断两个对象是否相等的唯一标准是:两个对象通过compareTo(Object obj)方法比较返回值。
-
当需要把一个对象放入TreeSet中,重写该对象对应的equals()方法时,应保证该方法与compareTo(Object obj)方法有一致的结果:如果两个对象通过equals()方法比较返回true,则通过compareTo(object ob)方法比较应返回0。否则,让人难以理解。
@Test
public void test1(){
TreeSet set = new TreeSet();
//失败:不能添加不同类的对象
// set.add(123);
// set.add(456);
// set.add("AA");
// set.add(new User("Tom",12));
//举例一:
// set.add(34);
// set.add(-34);
// set.add(43);
// set.add(11);
// set.add(8);
//举例二:
set.add(new User("Tom",12));
set.add(new User("Jerry",32));
set.add(new User("Jim",2));
set.add(new User("Mike",65));
set.add(new User("Jack",33));
set.add(new User("Jack",56));
Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
方式二:定制排序
-
TreeSet的自然排序要求元素所属的类实现Comparable接口,如果元素所属的类没有实现 Comparable接口,或不希望按照升序(默认情况)的方式排列元素或希望按照其它属性大小进行排序,则考虑使用定制排序。定制排序,通过 Comparator接口来实现。需要重写 compare(T o1,T o2)方法。
-
利用int compare(T o1,T o2)方法,比较o1和o2的大小:如果方法返回正整数,则表示o1大于o2;如果返回0,表示相等;返回负整数,表示o1小于o2。
-
要实现定制排序,需要将实现Comparator接口的实例作为形参传递给TreeSet的构造器。
-
此时,仍然只能向Treeset中添加类型相同的对象。否则发生 ClassCastException异常
-
使用定制排序判断两个元素相等的标准是:通过 Comparator比较两个元素返回了0
@Test
public void test2(){
Comparator com = new Comparator() {
//照年龄从小到大排列
@Override
public int compare(Object o1, Object o2) {
if(o1 instanceof User && o2 instanceof User){
User u1 = (User)o1;
User u2 = (User)o2;
return Integer.compare(u1.getAge(),u2.getAge());
}else{
throw new RuntimeException("输入的数据类型不匹配");
}
}
};
TreeSet set = new TreeSet(com);
set.add(new User("Tom",12));
set.add(new User("Jerry",32));
set.add(new User("Jim",2));
set.add(new User("Mike",65));
set.add(new User("Mary",33));
set.add(new User("Jack",33));
set.add(new User("Jack",56));
Iterator iterator = set.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
六、Map接口
- Map与Collection并列存在。用于保存具有映射关系的数据:key-value
- Map中的key和value都可以是任何引用类型的数据
- Map中的key用set来存放,不允许重复,即同一个Map对象所对应的类,须重写 hashCode()和 equals()方法
- 常用 String类作为Map的“键”
- key和value之间存在单向一对一关系,即通过指定的key总能找到唯一的、确定的value
- Map接口的常用实现类:HashMap、TreeMap、LinkedHashMap和Properties。其中,HashMap是Map接口使用频率最高的实现类
1. 常见实现类结构
|----Map:双列数据,存储key-value对的数据 ---类似于高中的函数:y = f(x)
|----HashMap:作为Map的主要实现类;线程不安全的,效率高;存储null的key和value
|----LinkedHashMap:保证在遍历map元素时,可以照添加的顺序实现遍历。
原因:在原的HashMap底层结构基础上,添加了一对指针,指向前一个和后一个元素。
对于频繁的遍历操作,此类执行效率高于HashMap。
|----TreeMap:保证照添加的key-value对进行排序,实现排序遍历。此时考虑key的自然排序或定制排序
底层使用红黑树
|----Hashtable:作为古老的实现类;线程安全的,效率低;不能存储null的key和value
|----Properties:常用来处理配置文件。key和value都是String类型
HashMap的底层: 数组+链表 (JDK 7.0及之前)
数组+链表+红黑树 (JDK 8.0以后)
1.1 HashMap
-
HashMap是Map接口使用频率最高的实现类。
-
允许使用null键和null值,与 HashSet一样,不保证映射的顺序。
-
所有的key构成的集合是set:无序的、不可重复的。所以,key所在的类要重写equals()和 hashCode()
-
所有的value构成的集合是Collection:无序的、可以重复的。所以,value所在的类要重写:equals()
-
一个key-value构成一个entry
-
所有的entry构成的集合是Set:无序的、不可重复的
-
HashMap判断两个key相等的标准是:两个key通过equals()方法返回true,hashCode值也相等。
-
HashMap判断两个value相等的标准是:两个value通过equals()方法返回true.
代码示例:
@Test
public void test1(){
Map map = new HashMap();
map.put(null,123);
}
1.2 LinkedHashMap
- LinkedHashMap底层使用的结构与HashMap相同,因为LinkedHashMap继承于HashMap.
- 区别就在于:LinkedHashMap内部提供了Entry,替换HashMap中的Node.
- 与Linkedhash Set类似,LinkedHashMap可以维护Map的迭代顺序:迭代顺序与Key-value对的插入顺序一致
代码示例:
@Test
public void test2(){
Map map = new LinkedHashMap();
map.put(123,"AA");
map.put(345,"BB");
map.put(12,"CC");
System.out.println(map);
}
1.3 TreeMap
-
TreeMap存储Key-Value对时,需要根据key-value对进行排序。TreeMap可以保证所有的 Key-Value对处于有序状态。