Python 梯度下降实现逻辑回归
2021-02-06 20:15
标签:numpy range 梯度 header top multi == zip end Python 梯度下降实现逻辑回归 标签:numpy range 梯度 header top multi == zip end 原文地址:https://www.cnblogs.com/zjkbk/p/11622551.htmlimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
path = ‘data‘+os.sep+‘LogiReg_data.txt‘
pdData = pd.read_csv(path,header = None,names = [‘Exam 1‘,‘Exam 2‘,‘Admitted‘])
#设置header值为None,然后指定header值为names
pdData.head()
positive = pdData[pdData[‘Admitted‘] == 1]
negative = pdData[pdData[‘Admitted‘] == 0]
fig,ax = plt.subplots(figsize=(10,5))
ax.scatter(positive[‘Exam 1‘],positive[‘Exam 2‘],s=30,c=‘b‘,marker=‘o‘,label=‘Admitted‘)
ax.scatter(negative[‘Exam 1‘],negative[‘Exam 2‘],s=30,c=‘r‘,marker=‘x‘,label=‘Not Admitted‘)
ax.legend()
ax.set_xlabel(‘Exam 1 Score‘)
ax.set_ylabel(‘Exam 2 Score‘)
fig
def sigmod(z):
return 1/(1+np.exp(-z))
def model(X,theta):
return sigmod(np.dot(X,theta.T))
pdData.insert(0,‘ones‘,1)
original_data = pdData.as_matrix()
cols = original_data.shape[1] #cols记录一共有几列数据
X = original_data[:,0:cols-1]
Y = original_data[:,cols-1:cols]
theta = np.zeros([1,3]) #theta = array([[0., 0., 0.]]),构造全为零的行向量
def cost(X,Y,theta):
left = np.multiply(-Y,np.log(model(X,theta)))
right = np.multiply(1-Y,np.log(1-model(X,theta)))
return np.sum(left-right)/ (len(X))
def gradient(X,Y,theta):
grad = np.zeros(theta.shape)
error = (model(X,theta)-Y).ravel()
for j in range(len(theta.ravel())):
term = np.multiply(error,X[:,j]) #(h(Xi)-Yi)*Xi
grad[0,j] = np.sum(term)/len(X) #∑term / m
return grad
STOP_ITER = 0
STOP_COST = 1
STOP_GRAD = 2
def stop_fun(type,value,threshold):
if type == STOP_ITER:
return value > threshold #达到一定次数后停止
elif type == STOP_COST:
return abs(value[-1]-value[-2]) #小于一定阈值时停止
elif type == STOP_GRAD:
return np.linalg.norm(value) #小于一定阈值时停止
import numpy.random
def shuffleData(data):
np.random.shuffle(data) #将数据打乱
cols = data.shape[1]
X = data[:,0:cols-1]
Y = data[:,cols-1:]
return X,Y
import time
def descent(data,theta,batchSize,stopType,thresh,alpha):
init_time = time.time()
i = 0 #迭代次数
k = 0 #batch
X,Y = shuffleData(data)
grad = np.zeros(theta.shape) #梯度初始化
costs = [cost(X,Y,theta)] #计算损失值
while 1:
grad = gradient(X[k:k+batchSize],Y[k:k+batchSize],theta)
k+=batchSize
if k >= n:
k = 0
X,Y = shuffleData(data)
theta = theta - alpha*grad #对参数进行更新
costs.append(cost(X,Y,theta))
i += 1
if stopType == STOP_ITER:
value = i
elif stopType == STOP_COST:
value = costs
elif stopType == STOP_GRAD:
value = grad
if stop_fun(stopType,value,thresh): break
return theta,i-1,costs,grad,time.time()-init_time
def run_example(data, theta, batchSize, stopType, thresh, alpha):
theta,iter,costs,grad,times = descent(data,theta,batchSize,stopType,thresh,alpha)
name = ‘Original‘ if (data[:,1]>2).sum() > 1 else "Scaled"
name += " data - learning rate: {} - ".format(alpha)
if batchSize==n:
strDescType = "Gradient"
elif batchSize==1:
strDescType = "Stochastic"
else:
strDescType = "Mini-batch ({})".format(batchSize)
name += strDescType + " descent - Stop: " #输出梯度下降策略
if stopType == STOP_ITER:
strStop = "{} iterations".format(thresh)
elif stopType == STOP_COST:
strStop = "costs change ".format(thresh)
else:
strStop = "gradient norm ".format(thresh)
name += strStop #输出停止策略
print ("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(name, theta, iter, costs[-1], times))
#打印相关信息
#画图
fig,ax = plt.subplots(figsize = (12,4))
ax.plot(np.arange(len(costs)),costs,‘r‘)
ax.set_xlabel(‘Iterations‘)
ax.set_ylabel(‘Cost‘)
ax.set_title(name.upper() + ‘ - Error vs. Iteration‘)
plt.show(fig)
return theta
from sklearn import preprocessing as pp
scaled_data = original_data.copy()
scaled_data[:,1:3] = pp.scale(original_data[:,1:3])
run_example(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
theta = run_example(scaled_data, theta, 1, STOP_GRAD, thresh=0.002/5, alpha=0.001)
def predict(X,theta):
return [1 if x>= 0.5 else 0 for x in model(X,theta)]
scaled_X = scaled_data[:,:3]
scaled_Y = scaled_data[:,3]
predictions = predict(scaled_X,theta)
correct = [1 if((a==1 and b==1) or (a==0 and b==0)) else 0 for (a,b) in zip(predictions,scaled_Y)]
accuracy = (sum(map(int,correct)) % len(correct))
print(‘accuracy = {0}%‘.format(accuracy))
from sklearn.cross_validation import KFold
from sklearn.cross_validation import cross_val_score
from sklearn.linear_model import LogisticRegression
kf = KFold(len(scaled_X),10,shuffle = True,random_state = 8)
lr = LogisticRegression()
accuracies = cross_val_score(lr,scaled_X,scaled_Y,scoring = ‘roc_auc‘,cv=kf)
average_accuracy = sum(accuracies)/len(accuracies)
plot_roc(scaled_Y,predictions)
print(accuracies)
print(average_accuracy)
from sklearn.metrics import roc_curve, auc
def plot_roc(labels, predict_prob):
#labels:正确标签
#predict_prob:预测标签
false_positive_rate,true_positive_rate,thresholds=roc_curve(labels, predict_prob)
roc_auc=auc(false_positive_rate, true_positive_rate)
plt.title(‘ROC‘)
plt.plot(false_positive_rate, true_positive_rate,‘b‘,label=‘AUC = %0.4f‘% roc_auc)
plt.legend(loc=‘lower right‘)
plt.plot([0,1],[0,1],‘r--‘)
plt.ylabel(‘TPR‘)
plt.xlabel(‘FPR‘)
plt.show()