单神经元的神经网络基本算法

2021-02-18 12:18

阅读:509

标签:strong   基本算法   自己的   公式   通用   结果   怎么   计算   特征   

  假设条件:我们有m个样本,每个样本有n个特征。我们的目的是通过神经网络的训练,使模型能够识别每张图片是否是指定的图像。

  首先每个样本有n个特征值,我们的最终模型需要包含n个w,1个b。模型通过公式temp=wx,计算每一个特征值的temp的值,最后累加,这里的每个x特征值都对应一个自己的w。最后加上一个通用的b,得到Z。最后通过激活函数,得出最终的判定结果A。这里的A的值可能因为激活函数不同而改变。

  以上是神经网络对该样本的判定过程,那么怎么训练呢?

  我们首先给所有的w赋初值。然后对于每一个特征值的w,通过公式w=w-r*(x*(a-y))进行梯度下降,公式里的r是学习率,x是该特征的特征值,a是模型当前的预测结果,y是正确结果。同样的道理b=b-r*(a-y)进行梯度下降。

  通过一遍遍的前向传播和反向传播,不断更新w和b,最终得到的w和b参数配合激活函数已经能预测样本了。

单神经元的神经网络基本算法

标签:strong   基本算法   自己的   公式   通用   结果   怎么   计算   特征   

原文地址:https://www.cnblogs.com/wang2804355025/p/12692204.html


评论


亲,登录后才可以留言!