Boyer-Moore算法

2021-02-19 21:21

阅读:799

标签:优化   ==   index   规则   存在   原则   com   相同   线性   

BM(Boyer-Moore)

部分资料来自:https://blog.csdn.net/no_heart2019/article/details/96564763

https://blog.csdn.net/qzp1991/article/details/42663969

https://blog.csdn.net/v_JULY_v/article/details/6545192

https://blog.csdn.net/qq_21201267/article/details/92799488

BM算法被认为是亚线性串匹配算法,它在最坏情况下找到模式所有出现的时间复杂度为O(mn),在最好情况下执行匹配找到模式所有出现的时间复杂度为O(n/m)。

尤其在空格较多的文本中,比KMP算法的实际效能高。

BM算法从模式串的尾部开始匹配,即从后往前

两个规则

这是BM算法的核心,他有两种跳转方式,分别对应两种规则,而每次跳转多少取决于这两种跳转规则的最大值

坏字符规则(文本中效率高的体现点)

当文本串中的某个字符跟模式串的某个字符不匹配时,我们称文本串中的这个失配字符为坏字符,此时模式串需要向右移动

移动的位数 = 坏字符在模式串中的位置 - 坏字符在模式串中最右出现的位置

此外,如果"坏字符"不包含在模式串之中,则最右出现位置为-1。

技术图片

S失配,而模式串中S的出现在-1(即没有,w的下标为0)

减去相对位置差S->6(当前坏字符位置), S‘->-1(模式串位置), 6-(-1)==7

所以我们后移7步,得到:

技术图片

如何理解?我们要让字符串匹配成功的必要条件是让这个坏字符要满足情况,所以你肯定优先找到模式串对应的字符与之匹配,让之先满足情况

其次为了防止漏了正确答案,取的是最右位置

如果是不存在,位置给-1,它就整串下移了

这也就是为什么文本中效率比较高,文本空格多,让坏字符出现的可能性更大,频率更高,跳转性以及跳转幅度很可观

进一步使用坏字符原则我们可以得到:

技术图片

好后缀规则

好后缀,指的就是当前以及匹配上的子串

先看图,下面的图很清晰的展现了好后缀规则,我们现在有好后缀bc

技术图片

通过上图,我们可以总结出来,此规则是:

从好后缀中的所有后缀子串中,找一个最长的的后缀v,并且使得它在模式串中存在相同的子串v‘,v!=v‘,如图:

技术图片

而后移位数,与坏字符规则类似,当字符失配时,后移位数=v‘的位置-v的位置

注意他和kmp的next不同,思路有相似之处

那么BM算法的核心来了,那么如何求好后缀中最长满足条件的子串嘞?

请看下面预处理部分

预处理

坏字符

坏字符,存每个字符出现在最右边的位置,后移步数可能算出来是负的,但是好规则取值一定是正的,取完max无影响

好字符

而好后缀的求解并不像KMP中next数组递推去求解,它求起来细节特别多

首先是暴力求解如下内容,这里复杂度要看模式串情况

技术图片

for(int i=0;i=0&&s[j]==s[s.size()-k-1])
    {
        j--,k++;
        suffix[k]=j+1;
    }
}

注意这里,当好后缀有多个可行的前缀位置,我们从前往后找会产生覆盖,从而我们取的是这些位置当中最右的

很多情况下,好后缀不一定有对应前缀,但它的后缀子串有

所以为了跳转方便,我们不妨进一步再处理一下,suffix为-1的好后缀它们所包含的最长可行子后缀的情况

int curpos=-1;
for(int i=1;i

匹配

取好规则与坏规则最大者

注意一下suffix为-1的情况以及匹配成功该如何处理(详见代码)

不足

之前讲了最坏情况下找到模式所有出现的时间复杂度为O(mn),why?

比如说,一个最拉跨例子aaaaaaa匹配aaaaaa...复杂度起飞,不仅预处理会拉垮,而且匹配时也会拉垮

但是在正常文本匹配,如文章中找单词,BM效率优于KMP

代码

/*
    BM算法
    统计目标串中模式串的个数
*/
#include
#include
#include
using namespace std;
#define maxn 10005
#define ll long long int
int suffix[maxn],index[maxn],Map[256];
void bad_char_deal(string s)//坏字符,建立哈希,映射位置是从左开始
{
    memset(Map,-1,sizeof(Map));
    for(int i=0;i=0&&s[j]==s[s.size()-k-1])
	    {
	        j--,k++;
	        suffix[k]=j+1;//记录当前好后缀对应的前子串位置
	    }
	}
	int curpos=-1;
	/*这里进行优化,如果好后缀无前对应的子串,
	记录好后缀中最大的满足要求的后缀子串,方便后面的跳转
	注意这里suffix下标指的是好后缀的长度
	*/
	for(int i=1;i>patt_str>>targ_str;
    prev_deal(patt_str);
    cout

Boyer-Moore算法

标签:优化   ==   index   规则   存在   原则   com   相同   线性   

原文地址:https://www.cnblogs.com/et3-tsy/p/12683792.html

上一篇:java 抽象类和接口

下一篇:Rx Swift5更新


评论


亲,登录后才可以留言!