darknet-yolov3训练自己的数据集(转)
2021-02-20 10:22
标签:openmp nmp label 生成 etc 改版 str 如何 test 一、标注工具(labelimg) 1.下载地址 2.双击运行 3.保存后的文件为xml格式 二、下载编译darknet 1.拉取darknet 2.修改配置文件Makefile(如何使用gpu可参考) 3.开始编译 4.下载yolov3预训练模型 5.测试 或者 官网链接 三、准备数据集、训练、测试 1.在darknet目录下创建myData文件夹,目录结构如下,将之前标注好的图片和xml文件放到对应目录下 将自己的数据集图片拷贝到JPEGImages目录下。将数据集label文件拷贝到Annotations目录下。在myData下创建test.py,将下面代码拷贝进去运行,将生成四个文件:train.txt,val.txt,test.txt和trainval.txt。 运行test.py 2.将数据转换成darknet支持的格式 yolov3提供了将VOC数据集转为YOLO训练所需要的格式的代码,在scripts/voc_label.py文件中。这里提供一个修改版本的。在darknet文件夹下新建一个my_lables.py文件,内容如下: 3.运行该脚本 会在./myData目录下生成一个labels文件夹一个txt文件(myData_train.txt)(内容是: 类别的编码和目标的相对位置)。 lables文件中的‘txt文件的含义为: 同理如果要生成训练数据 sets=[(‘myData‘, ‘train‘)] 改为sets=[(‘myData‘, ‘train‘), (‘myData‘, ‘test‘)] 具体的每一个值的计算方式是这样的:假设一个标注的boundingbox的左下角和右上角坐标分别为(x1,y1)(x2,y2),图像的宽和高分别为w,h 归一化的中心点x坐标计算公式:((x2+x1) / 2.0)/ w 归一化的中心点y坐标计算公式:((y2+y1) / 2.0)/ h 归一化的目标框宽度的计算公式: (x2-x1) / w 归一化的目标框高度计算公式:((y2-y1)/ h 4.修改darknet/cfg下的voc.data和yolov3-voc.cfg文件 为了保险起见,复制这两个文件,并分别重命名为my_data.data和my_yolov3.cfg my_data.data内容: my_yolov3.cfg的内容: /yolo, 总共会搜出3个含有yolo的地方。 5.可以指定训练批次和训练轮数 因为是训练,所以注释Testing,打开Training,其中 batch=64 每batch个样本更新一次参数。 subdivisions=16 如果内存不够大,将batch分割为subdivisions个子batch,每个子batch的大小为batch/subdivisions。 6.在myData文件夹下新建myData.names文件 7.下载预训练权重 8.开始训练 或者指定gpu训练,默认使用gpu0 查看gpu信息 从停止处重新训练 9.测试 10.效果
11.关于opencv调用yolo模型,参考https://www.cnblogs.com/answerThe/p/11486090.html darknet-yolov3训练自己的数据集(转) 标签:openmp nmp label 生成 etc 改版 str 如何 test 原文地址:https://www.cnblogs.com/bile/p/12918401.htmlgit clone https://github.com/pjreddie/darknet
cd darknet
GPU=1 #如果使用GPU设置为1,CPU设置为0
CUDNN=1 #如果使用CUDNN设置为1,否则为0
OPENCV=0 #如果调用摄像头,还需要设置OPENCV为1,否则为0
OPENMP=0 #如果使用OPENMP设置为1,否则为0
DEBUG=0 #如果使用DEBUG设置为1,否则为0
make
wget https://pjreddie.com/media/files/yolov3.weights
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
./darknet detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights data/dog.jpg
myData
...JPEGImages#存放图像
...Annotations#存放图像对应的xml文件
...ImageSets/Main # 存放训练/验证图像的名字(格式如 000001.jpg或者000001),里面包括train.txt。这里给出的格式是: 000000,因为下面的代码中给出了图像的格式。
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = ‘Annotations‘
txtsavepath = ‘ImageSets\Main‘
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open(‘ImageSets/Main/trainval.txt‘, ‘w‘)
ftest = open(‘ImageSets/Main/test.txt‘, ‘w‘)
ftrain = open(‘ImageSets/Main/train.txt‘, ‘w‘)
fval = open(‘ImageSets/Main/val.txt‘, ‘w‘)
for i in list:
name = total_xml[i][:-4] + ‘\n‘
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
#源代码sets=[(‘2012‘, ‘train‘), (‘2012‘, ‘val‘), (‘2007‘, ‘train‘), (‘2007‘, ‘val‘), (‘2007‘, ‘test‘)]
sets=[(‘myData‘, ‘train‘)] # 改成自己建立的myData
classes = ["person", "foot", "face"] # 改成自己的类别
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(year, image_id):
in_file = open(‘myData/Annotations/%s.xml‘%(image_id)) # 源代码VOCdevkit/VOC%s/Annotations/%s.xml
out_file = open(‘myData/labels/%s.txt‘%(image_id), ‘w‘) # 源代码VOCdevkit/VOC%s/labels/%s.txt
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find(‘size‘)
w = int(size.find(‘width‘).text)
h = int(size.find(‘height‘).text)
for obj in root.iter(‘object‘):
difficult = obj.find(‘difficult‘).text
cls = obj.find(‘name‘).text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find(‘bndbox‘)
b = (float(xmlbox.find(‘xmin‘).text), float(xmlbox.find(‘xmax‘).text), float(xmlbox.find(‘ymin‘).text), float(xmlbox.find(‘ymax‘).text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + ‘\n‘)
wd = getcwd()
for year, image_set in sets:
if not os.path.exists(‘myData/labels/‘): # 改成自己建立的myData
os.makedirs(‘myData/labels/‘)
image_ids = open(‘myData/ImageSets/Main/%s.txt‘%(image_set)).read().strip().split()
list_file = open(‘myData/%s_%s.txt‘%(year, image_set), ‘w‘)
for image_id in image_ids:
list_file.write(‘%s/myData/JPEGImages/%s.jpg\n‘%(wd, image_id))
convert_annotation(year, image_id)
list_file.close()
python my_lables.py
classes= 3 ##改为自己的分类个数
##下面都改为自己的路径
train = /home/XXX/darknet/myData/myData_train.txt
names = /home/XXX/darknet/myData/myData.names #稍后需要创建这个文件
backup = /home/XXX/darknet/myData/weights
每个地方都必须要改2处, filters:3*(5+len(classes));
其中:classes: len(classes) = 3,这里以我的工程为例
filters = 24
classes = 3
可修改:random = 1:原来是1,显存小改为0。(是否要多尺度输出。)[net]
# Testing ### 测试模式
# batch=1
# subdivisions=1
# Training ### 训练模式,每次前向的图片数目 = batch/subdivisions
batch=64
subdivisions=16
width=416 ### 网络的输入宽、高、通道数
height=416
channels=3
momentum=0.9 ### 动量
decay=0.0005 ### 权重衰减
angle=0
saturation = 1.5 ### 饱和度
exposure = 1.5 ### 曝光度
hue=.1 ### 色调
learning_rate=0.001 ### 学习率
burn_in=1000 ### 学习率控制的参数
max_batches = 50200 ### 迭代次数
policy=steps ### 学习率策略
steps=40000,45000 ### 学习率变动步长
people
foot
car
wget https://pjreddie.com/media/files/darknet53.conv.74
./darknet detector train cfg/my_data.data cfg/my_yolov3.cfg darknet53.conv.74
./darknet detector train cfg/my_data.data cfg/my_yolov3.cfg darknet53.conv.74 -gups 0,1,2,3
./darknet detector train cfg/my_data.data cfg/my_yolov3.cfg darknet53.conv.74 -gups 0,1,2,3 myData/weights/my_yolov3.backup -gpus 0,1,2,3
./darknet detect cfg/my_yolov3.cfg weights/my_yolov3.weights 1.jpg
上一篇:Http 连接复用
下一篇:串口API及数据流的传输
文章标题:darknet-yolov3训练自己的数据集(转)
文章链接:http://soscw.com/index.php/essay/57944.html