java代理

2021-03-04 07:27

阅读:478

public static void main(String[] args) {

        IUserService target = new UserServiceImpl();
        MyInvocationHandler handler = new MyInvocationHandler(target);
        IUserService proxyObject = (IUserService) Proxy.newProxyInstance(DynamicProxyTest.class.getClassLoader(),
                target.getClass().getInterfaces(), handler);
        proxyObject.add("张玉龙");
    }

使用上非常简单、网上demo也很多,不做充分讲解,对jdk代理用法的小伙伴如果还不熟悉这块代码,就先了解一下jdk代理的使用方式,然后在回来继续看下面的源码分析

JDK代理源码深度分析
 
这部分如果想要更快更好的理解,建议一边对着源码(本文JDK 1.8),一边看着博客。毕竟自己亲身实践效果才好嘛。 Proxy.newProxyInstance( ClassLoaderloader, Class[] interfaces, InvocationHandler h) 产生了代理对象,所以我们进到 newProxyInstance 的实现:
 
public static Object newProxyInstance(ClassLoader loader,
                                      Class>[] interfaces,
                                      InvocationHandler h)
    throws IllegalArgumentException
{
    Objects.requireNonNull(h);

    final Class>[] intfs = interfaces.clone();
    final SecurityManager sm = System.getSecurityManager();
    if (sm != null) {
        checkProxyAccess(Reflection.getCallerClass(), loader, intfs);
    }

    /*
     * Look up or generate the designated proxy class.
     */
    Class> cl = getProxyClass0(loader, intfs);

    /*
     * Invoke its constructor with the designated invocation handler.
     */
    try {
        if (sm != null) {
            checkNewProxyPermission(Reflection.getCallerClass(), cl);
        }

        final Constructor> cons = cl.getConstructor(constructorParams);
        final InvocationHandler ih = h;
        if (!Modifier.isPublic(cl.getModifiers())) {
            AccessController.doPrivileged(new PrivilegedAction() {
                public Void run() {
                    cons.setAccessible(true);
                    return null;
                }
            });
        }
        return cons.newInstance(new Object[]{h});
    } catch (IllegalAccessException|InstantiationException e) {
        throw new InternalError(e.toString(), e);
    } catch (InvocationTargetException e) {
        Throwable t = e.getCause();
        if (t instanceof RuntimeException) {
            throw (RuntimeException) t;
        } else {
            throw new InternalError(t.toString(), t);
        }
    } catch (NoSuchMethodException e) {
        throw new InternalError(e.toString(), e);
    }
}

  

 
 
这段代码核心就是通过 getProxyClass0(loader, intfs)得到代理类的Class对象,然后通过Class对象得到构造方法,进而创建代理对象。下一步看 getProxyClass0这个方法。
 
//此方法也是Proxy类下的方法
    private static Class> getProxyClass0(ClassLoader loader,
                                           Class>... interfaces) {
        if (interfaces.length > 65535) {
            throw new IllegalArgumentException("interface limit exceeded");
        }

        // If the proxy class defined by the given loader implementing
        // the given interfaces exists, this will simply return the cached copy;
        // otherwise, it will create the proxy class via the ProxyClassFactory
        //意思是:如果代理类被指定的类加载器loader定义了,并实现了给定的接口interfaces,
        //那么就返回缓存的代理类对象,否则使用ProxyClassFactory创建代理类。
        return proxyClassCache.get(loader, interfaces);
    }

 这里看到proxyClassCache,有Cache便知道是缓存的意思,正好呼应了前面Look up or generate the designated proxy class。查询(在缓存中已经有)或生成指定的代理类的class对象这段注释。

proxyClassCache是个WeakCache类的对象,调用proxyClassCache.get(loader, interfaces); 可以得到缓存的代理类或创建代理类(没有缓存的情况)。说明WeakCache中有 get这个方法。先看下WeakCache类的定义(这里先只给出变量的定义和构造函数):
 
//K代表key的类型,P代表参数的类型,V代表value的类型。
// WeakCache>[], Class>>  proxyClassCache  说明proxyClassCache存的值是Class>对象,正是我们需要的代理类对象。
final class WeakCacheK, P, V> {

    private final ReferenceQueue refQueue
        = new ReferenceQueue();
    // the key type is Object for supporting null key
    private final ConcurrentMap>> map
        = new ConcurrentHashMap();
    private final ConcurrentMap, Boolean> reverseMap
        = new ConcurrentHashMap();
    private final BiFunction?> subKeyFactory;
    private final BiFunction valueFactory;

  
    public WeakCache(BiFunction?> subKeyFactory,
                     BiFunction valueFactory) {
        this.subKeyFactory = Objects.requireNonNull(subKeyFactory);
        this.valueFactory = Objects.requireNonNull(valueFactory);
    }

  

 其中map变量是实现缓存的核心变量,他是一个双重的Map结构:   (key, sub-key) -> value。其中key是传进来的Classloader进行包装后的对象,sub-key是由WeakCache构造函数传人的 KeyFactory()生成的。value就是产生代理类的对象,是由WeakCache构造函数传人的 ProxyClassFactory()生成的

 好,大体上说完WeakCache这个类的作用,我们回到刚才 proxyClassCache.get(loader, interfaces);这句代码。get是WeakCache里的方法。源码如下
//K和P就是WeakCache定义中的泛型,key是类加载器,parameter是接口类数组
public V get(K key, P parameter) {
        //检查parameter不为空
        Objects.requireNonNull(parameter);
         //清除无效的缓存
        expungeStaleEntries();
        // cacheKey就是(key, sub-key) -> value里的一级key,
        Object cacheKey = CacheKey.valueOf(key, refQueue);

        // lazily install the 2nd level valuesMap for the particular cacheKey
        //根据一级key得到 ConcurrentMap>对象。如果之前不存在,则新建一个ConcurrentMap>和cacheKey(一级key)一起放到map中。
        ConcurrentMap> valuesMap = map.get(cacheKey);
        if (valuesMap == null) {
            ConcurrentMap> oldValuesMap
                = map.putIfAbsent(cacheKey,
                                  valuesMap = new ConcurrentHashMap());
            if (oldValuesMap != null) {
                valuesMap = oldValuesMap;
            }
        }

        // create subKey and retrieve the possible Supplier stored by that
        // subKey from valuesMap
        //这部分就是调用生成sub-key的代码,上面我们已经看过怎么生成的了
        Object subKey = Objects.requireNonNull(subKeyFactory.apply(key, parameter));
        //通过sub-key得到supplier
        Supplier supplier = valuesMap.get(subKey);
        //supplier实际上就是这个factory
        Factory factory = null;

        while (true) {
            //如果缓存里有supplier ,那就直接通过get方法,得到代理类对象,返回,就结束了,一会儿分析get方法。
            if (supplier != null) {
                // supplier might be a Factory or a CacheValue instance
                V value = supplier.get();
                if (value != null) {
                    return value;
                }
            }
            // else no supplier in cache
            // or a supplier that returned null (could be a cleared CacheValue
            // or a Factory that wasn‘t successful in installing the CacheValue)
            // lazily construct a Factory
            //下面的所有代码目的就是:如果缓存中没有supplier,则创建一个Factory对象,把factory对象在多线程的环境下安全的赋给supplier。
            //因为是在while(true)中,赋值成功后又回到上面去调get方法,返回才结束。
            if (factory == null) {
                factory = new Factory(key, parameter, subKey, valuesMap);
            }

            if (supplier == null) {
                supplier = valuesMap.putIfAbsent(subKey, factory);
                if (supplier == null) {
                    // successfully installed Factory
                    supplier = factory;
                }
                // else retry with winning supplier
            } else {
                if (valuesMap.replace(subKey, supplier, factory)) {
                    // successfully replaced
                    // cleared CacheEntry / unsuccessful Factory
                    // with our Factory
                    supplier = factory;
                } else {
                    // retry with current supplier
                    supplier = valuesMap.get(subKey);
                }
            }
        }
    }

  所以接下来我们看Factory类中的get方法。

public synchronized V get() { // serialize access
            // re-check
            Supplier supplier = valuesMap.get(subKey);
            //重新检查得到的supplier是不是当前对象
            if (supplier != this) {
                // something changed while we were waiting:
                // might be that we were replaced by a CacheValue
                // or were removed because of failure ->
                // return null to signal WeakCache.get() to retry
                // the loop
                return null;
            }
            // else still us (supplier == this)

            // create new value
            V value = null;
            try {
                 //代理类就是在这个位置调用valueFactory生成的
                 //valueFactory就是我们传入的 new ProxyClassFactory()
                //一会我们分析ProxyClassFactory()的apply方法
                value = Objects.requireNonNull(valueFactory.apply(key, parameter));
            } finally {
                if (value == null) { // remove us on failure
                    valuesMap.remove(subKey, this);
                }
            }
            // the only path to reach here is with non-null value
            assert value != null;

            // wrap value with CacheValue (WeakReference)
            //把value包装成弱引用
            CacheValue cacheValue = new CacheValue(value);

            // put into reverseMap
            // reverseMap是用来实现缓存的有效性
            reverseMap.put(cacheValue, Boolean.TRUE);

            // try replacing us with CacheValue (this should always succeed)
            if (!valuesMap.replace(subKey, this, cacheValue)) {
                throw new AssertionError("Should not reach here");
            }

            // successfully replaced us with new CacheValue -> return the value
            // wrapped by it
            return value;
        }
    }

  拨云见日,来到ProxyClassFactory的apply方法,代理类就是在这里生成的。

//这里的BiFunction是个函数式接口,可以理解为用T,U两种类型做参数,得到R类型的返回值
private static final class ProxyClassFactory
        implements BiFunction[], Class>>
    {
        // prefix for all proxy class names
        //所有代理类名字的前缀
        private static final String proxyClassNamePrefix = "$Proxy";
        
        // next number to use for generation of unique proxy class names
        //用于生成代理类名字的计数器
        private static final AtomicLong nextUniqueNumber = new AtomicLong();

        @Override
        public Class> apply(ClassLoader loader, Class>[] interfaces) {
              
            Map, Boolean> interfaceSet = new IdentityHashMap(interfaces.length);
            //验证代理接口,可不看
            for (Class> intf : interfaces) {
                /*
                 * Verify that the class loader resolves the name of this
                 * interface to the same Class object.
                 */
                Class> interfaceClass = null;
                try {
                    interfaceClass = Class.forName(intf.getName(), false, loader);
                } catch (ClassNotFoundException e) {
                }
                if (interfaceClass != intf) {
                    throw new IllegalArgumentException(
                        intf + " is not visible from class loader");
                }
                /*
                 * Verify that the Class object actually represents an
                 * interface.
                 */
                if (!interfaceClass.isInterface()) {
                    throw new IllegalArgumentException(
                        interfaceClass.getName() + " is not an interface");
                }
                /*
                 * Verify that this interface is not a duplicate.
                 */
                if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) {
                    throw new IllegalArgumentException(
                        "repeated interface: " + interfaceClass.getName());
                }
            }
            //生成的代理类的包名 
            String proxyPkg = null;     // package to define proxy class in
            //代理类访问控制符: public ,final
            int accessFlags = Modifier.PUBLIC | Modifier.FINAL;

            /*
             * Record the package of a non-public proxy interface so that the
             * proxy class will be defined in the same package.  Verify that
             * all non-public proxy interfaces are in the same package.
             */
            //验证所有非公共的接口在同一个包内;公共的就无需处理
            //生成包名和类名的逻辑,包名默认是com.sun.proxy,类名默认是$Proxy 加上一个自增的整数值
            //如果被代理类是 non-public proxy interface ,则用和被代理类接口一样的包名
            for (Class> intf : interfaces) {
                int flags = intf.getModifiers();
                if (!Modifier.isPublic(flags)) {
                    accessFlags = Modifier.FINAL;
                    String name = intf.getName();
                    int n = name.lastIndexOf(‘.‘);
                    String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
                    if (proxyPkg == null) {
                        proxyPkg = pkg;
                    } else if (!pkg.equals(proxyPkg)) {
                        throw new IllegalArgumentException(
                            "non-public interfaces from different packages");
                    }
                }
            }

            if (proxyPkg == null) {
                // if no non-public proxy interfaces, use com.sun.proxy package
                proxyPkg = ReflectUtil.PROXY_PACKAGE + ".";
            }

            /*
             * Choose a name for the proxy class to generate.
             */
            long num = nextUniqueNumber.getAndIncrement();
            //代理类的完全限定名,如com.sun.proxy.$Proxy0.calss
            String proxyName = proxyPkg + proxyClassNamePrefix + num;

            /*
             * Generate the specified proxy class.
             */
            //核心部分,生成代理类的字节码
            byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
                proxyName, interfaces, accessFlags);
            try {
                //把代理类加载到JVM中,至此动态代理过程基本结束了
                return defineClass0(loader, proxyName,
                                    proxyClassFile, 0, proxyClassFile.length);
            } catch (ClassFormatError e) {
                /*
                 * A ClassFormatError here means that (barring bugs in the
                 * proxy class generation code) there was some other
                 * invalid aspect of the arguments supplied to the proxy
                 * class creation (such as virtual machine limitations
                 * exceeded).
                 */
                throw new IllegalArgumentException(e.toString());
            }
        }
    }

  到这里其实已经分析完了,但是本着深究的态度,决定看看JDK生成的动态代理字节码是什么,于是我们将字节码保存到磁盘上的class文件中。代码如下:

public static void main(String[] args) {

        IUserService target = new UserServiceImpl();
        MyInvocationHandler handler = new MyInvocationHandler(target);
        //第一个参数是指定代理类的类加载器(我们传入当前测试类的类加载器)
        //第二个参数是代理类需要实现的接口(我们传入被代理类实现的接口,这样生成的代理类和被代理类就实现了相同的接口)
        //第三个参数是invocation handler,用来处理方法的调用。这里传入我们自己实现的handler
        IUserService proxyObject = (IUserService) Proxy.newProxyInstance(DynamicProxyTest.class.getClassLoader(),
                target.getClass().getInterfaces(), handler);
        proxyObject.add("张玉龙");
        
        String path = "D:/$Proxy0.class";
        byte[] classFile = ProxyGenerator.generateProxyClass("$Proxy0", HelloworldImpl.class.getInterfaces());
        FileOutputStream out = null;

        try {
            out = new FileOutputStream(path);
            out.write(classFile);
            out.flush();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            try {
                out.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        
    }

   运行这段代码,会在D盘生成一个名为$Proxy0.class的文件。通过反编译工具,得到JDK为我们生成的代理类是这样的:

// Decompiled by Jad v1.5.8e2. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://kpdus.tripod.com/jad.html
// Decompiler options: packimports(3) fieldsfirst ansi space 

import com.zhb.jdk.proxy.IUserService;
import java.lang.reflect.*;

public final class $Proxy0 extends Proxy
    implements IUserService
{

    private static Method m1;
    private static Method m2;
    private static Method m3;
    private static Method m0;
    //代理类的构造函数,其参数正是是InvocationHandler实例,
    //Proxy.newInstance方法就是通过通过这个构造函数来创建代理实例的
    public $Proxy0(InvocationHandler invocationhandler)
    {
        super(invocationhandler);
    }
     // Object类中的三个方法,equals,toString, hashCode
    public final boolean equals(Object obj)
    {
        try
        {
            return ((Boolean)super.h.invoke(this, m1, new Object[] {
                obj
            })).booleanValue();
        }
        catch (Error ) { }
        catch (Throwable throwable)
        {
            throw new UndeclaredThrowableException(throwable);
        }
    }

    public final String toString()
    {
        try
        {
            return (String)super.h.invoke(this, m2, null);
        }
        catch (Error ) { }
        catch (Throwable throwable)
        {
            throw new UndeclaredThrowableException(throwable);
        }
    }
    //接口代理方法
    public final void add(String s)
    {
        try
        {
            // invocation handler的 invoke方法在这里被调用
            super.h.invoke(this, m3, new Object[] {
                s
            });
            return;
        }
        catch (Error ) { }
        catch (Throwable throwable)
        {
            throw new UndeclaredThrowableException(throwable);
        }
    }

    public final int hashCode()
    {
        try
        {
            // 在这里调用了invoke方法。
            return ((Integer)super.h.invoke(this, m0, null)).intValue();
        }
        catch (Error ) { }
        catch (Throwable throwable)
        {
            throw new UndeclaredThrowableException(throwable);
        }
    }
    
    // 静态代码块对变量进行一些初始化工作
    static 
    {
        try
        {
            m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] {
                Class.forName("java.lang.Object")
            });
            m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]);
            m3 = Class.forName("com.zhb.jdk.proxy.IUserService").getMethod("add", new Class[] {
                Class.forName("java.lang.String")
            });
            m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]);
        }
        catch (NoSuchMethodException nosuchmethodexception)
        {
            throw new NoSuchMethodError(nosuchmethodexception.getMessage());
        }
        catch (ClassNotFoundException classnotfoundexception)
        {
            throw new NoClassDefFoundError(classnotfoundexception.getMessage());
        }
    }
}

生成了Object类的三个方法:toString,hashCode,equals。还有我们需要被代理的方法。

 

JDK代理类的cache clear机制

大家都知道、在项目中被代理的class越来越多,所以jdk会搞一个cache的方式来防止相同的代理接口重复生成class,影响性能不说,实现也不是很优雅,那么现在就会有一个问题了,当classloader已经在内存中没有依赖的时候,被代理的proxy class其实也没有什么意义了,这样就需要清空无用的cache,java Proxy采用了非常巧妙的“弱引用机制”,我们来看下面的代码

我们还是继续看get方法的源码

 

public V get(K key, P parameter) {
        Objects.requireNonNull(parameter);

        expungeStaleEntries();

        Object cacheKey = CacheKey.valueOf(key, refQueue);

        // lazily install the 2nd level valuesMap for the particular cacheKey
        ConcurrentMapObject, Supplier> valuesMap = map.get(cacheKey);
        if (valuesMap == null) {
            ConcurrentMapObject, Supplier> oldValuesMap
                = map.putIfAbsent(cacheKey,
                                  valuesMap = new ConcurrentHashMap());
            if (oldValuesMap != null) {
                valuesMap = oldValuesMap;
            }
        }
.......
}

其中源码中有一个方法expungeStaleEntries、我们进去这个方法一窥究竟

private void expungeStaleEntries() {
        CacheKey cacheKey;
        while ((cacheKey = (CacheKey)refQueue.poll()) != null) {
            cacheKey.expungeFrom(map, reverseMap);
        }
    }

 在看看expungeFrom方法源码干了些什么

void expungeFrom(ConcurrentMap, ? extends ConcurrentMap, ?>> map,
                         ConcurrentMap, Boolean> reverseMap) {
            // removing just by key is always safe here because after a CacheKey
            // is cleared and enqueue-ed it is only equal to itself
            // (see equals method)...
            ConcurrentMap, ?> valuesMap = map.remove(this);
            // remove also from reverseMap if needed
            if (valuesMap != null) {
                for (Object cacheValue : valuesMap.values()) {
                    reverseMap.remove(cacheValue);
                }
            }
        }

  代码很清晰了,清空被代理的对象。现在的关键就是refQueue对象是怎么来的。我们继续找一下跟refQueue相关的源码、在get中还有一段代码是这样的

Object cacheKey = CacheKey.valueOf(key, refQueue);

 

private static final class CacheKeyK> extends WeakReferenceK> {

        // a replacement for null keys
        private static final Object NULL_KEY = new Object();

        static Object valueOf(K key, ReferenceQueue refQueue) {
            return key == null
                   // null key means we can‘t weakly reference it,
                   // so we use a NULL_KEY singleton as cache key
                   ? NULL_KEY
                   // non-null key requires wrapping with a WeakReference
                   : new CacheKey(key, refQueue);
        }

        private final int hash;

        private CacheKey(K key, ReferenceQueue refQueue) {
            super(key, refQueue);
            this.hash = System.identityHashCode(key);  // compare by identity
        }
.....
}

 这样看就非常清晰了、原来是CacheKey继承了WeakReference弱引用机制,当弱引用依赖的key没有引用的时候,当前失效的对象就会进入ReferenceQueue中来实现清空cache的功能、这种实现思路和ThreadLocal的实现原理是一样的、大家有兴趣可以去阅读以下相关源码。

 

三:手把手写基于接口的java代理

上面我们分析了jdk动态代理源码、那我们是不是可以自己用自己的方式去写一个属于自己的jdk代理呢,答案是可以的

首先我们写一个基类,当然我并没有在基类里面写什么东西,只是模拟java中的proxy类而已,当然我们也可以丰富的去拓展一下这个类的方法,来实现更多的功能,读者可以通过读完这篇文章之后自己去考虑一下如何来拓展。

1 package meituan.zylproxy.handlder;
2 public class ZylProxy {
3     public ZylProxy(){
4     }
5 }

 

代理的核心接口,我们去做代理的时候一定是通过反射去调用的,不管jdk也好还是cglib也好,永远也无法脱离反射,我们照猫画虎,自己写一个代理接口核心类,这并不是什么难题,看起来和jdk的核心类接口也没有什么区别。

1 package meituan.zylproxy.handlder;
2 
3 import java.lang.reflect.Method;
4 
5 public interface ZYLInvocationHandler {
6 
7     public Object invoke(Object proxy, Method method, Object[] args)
8         throws Exception;
9 }

说明一下 第一个参数proxy是代表代理类,而不是用户自己写的原生类实现。参数Method是接口的方法,args是运行时参数列表,在运行时传递过来的实际上就是实现类的参数,好了,下面让我们去深入核心。

我们自定义两个接口和接口的实现Idto,Idto2,和Dtoimpl如下:

1 package meituan.zylproxy.test.i;
2 
3 public interface Idto {
4 
5     public void add();
6     
7     public String get();
8     
9 }
package meituan.zylproxy.test.i;

public interface Idto2 {

    public void adda();
    
    public String geta();
    
}
package meituan.zylproxy.test.i.impl;

import meituan.zylproxy.test.i.Idto;
import meituan.zylproxy.test.i.Idto2;

public class DtoImpl implements Idto,Idto2{

    @Override
    public void add() {
        System.out.println("add");
        
    }

    @Override
    public String get() {
        System.out.println("get");
        return "return get";
    }

    @Override
    public void adda() {
        System.out.println("adda");
    }

    @Override
    public String geta() {
        System.out.println("geta");
        return "return geta";
    }

}

这是几个再简单不过的接口和实现类了,也没有什么可说的。接下来我们想对接口进行代理,无非是我们动态将接口进行实现,从而达到对使用者进行自定义handle接口暴露而已,下面看一下我们需要生成一个什么样的代理类。

import java.lang.reflect.Method;

import meituan.zylproxy.handlder.ZylProxy;
import meituan.zylproxy.handlder.ZYLInvocationHandler;
import meituan.zylproxy.test.i.Idto;
import meituan.zylproxy.test.i.Idto2;

public class IdtoPorxy extends ZylProxy implements Idto, Idto2 {
    public ZYLInvocationHandler zYLInvocationHandler;
    public static Method add1;
    public static Method get2;
    public static Method adda3;
    public static Method geta4;

    static {
        try {
            add1 = Class.forName ( "meituan.zylproxy.test.i.Idto" ).getMethod ( "add", new Class[0] );
            get2 = Class.forName ( "meituan.zylproxy.test.i.Idto" ).getMethod ( "get", new Class[0] );
            adda3 = Class.forName ( "meituan.zylproxy.test.i.Idto2" ).getMethod ( "adda", new Class[0] );
            geta4 = Class.forName ( "meituan.zylproxy.test.i.Idto2" ).getMethod ( "geta", new Class[0] );
        } catch (Exception e) {
        }
    }

    public IdtoPorxy(ZYLInvocationHandler zYLInvocationHandler) {
        this.zYLInvocationHandler = zYLInvocationHandler;
    }

    public void add() {
        Object[] o = {};
        try {
            this.zYLInvocationHandler.invoke ( this, add1, o );
            return;
        } catch (Throwable e) {
            e.printStackTrace ();
        }
    }

    public java.lang.String get() {
        Object[] o = {};
        try {
            return (java.lang.String) this.zYLInvocationHandler.invoke ( this, get2, o );
        } catch (Exception e) {
            e.printStackTrace ();
        }
        return null;
    }

    public void adda() {
        Object[] o = {};
        try {
            this.zYLInvocationHandler.invoke ( this, adda3, o );
            return;
        } catch (Throwable e) {
            e.printStackTrace ();
        }
    }

    public java.lang.String geta() {
        Object[] o = {};
        try {
            return (java.lang.String) this.zYLInvocationHandler.invoke ( this, geta4, o );
        } catch (Exception e) {
            e.printStackTrace ();
        }
        return null;
    }
}

这个类不是由用户写的,而是我们动态生成的,对于jdk来说是生成了字节码,对cglib来说是通过字节码增强,其实实现的方式有多种,后面为了更方便大家理解我用字符串的形式来动态生成这么一个"家伙",先看看这个类干了些什么吧,也很简单。

public class IdtoPorxy extends ZylProxy implements Idto, Idto2

首先是继承了刚才我们所说的ZylProxy,留着今后拓展,可以参照java的Proxy,然后并且动态的实现了这两个接口。很简单

public ZYLInvocationHandler zYLInvocationHandler;
public IdtoPorxy(ZYLInvocationHandler zYLInvocationHandler) {
    this.zYLInvocationHandler = zYLInvocationHandler;
}

这个是通过构造函数传进来一个handler对象,对实现类的操作都靠它了。

public static Method add1;
    public static Method get2;
    public static Method adda3;
    public static Method geta4;

    static {
        try {
            add1 = Class.forName ( "meituan.zylproxy.test.i.Idto" ).getMethod ( "add", new Class[0] );
            get2 = Class.forName ( "meituan.zylproxy.test.i.Idto" ).getMethod ( "get", new Class[0] );
            adda3 = Class.forName ( "meituan.zylproxy.test.i.Idto2" ).getMethod ( "adda", new Class[0] );
            geta4 = Class.forName ( "meituan.zylproxy.test.i.Idto2" ).getMethod ( "geta", new Class[0] );
        } catch (Exception e) {
        }
    }

枚举出来所有的接口的方法,通过class.forname来获取到Method元数据。备用

 

public void add() {
        Object[] o = {};
        try {
            this.zYLInvocationHandler.invoke ( this, add1, o );
            return;
        } catch (Throwable e) {
            e.printStackTrace ();
        }
    }

    public java.lang.String get() {
        Object[] o = {};
        try {
            return (java.lang.String) this.zYLInvocationHandler.invoke ( this, get2, o );
        } catch (Exception e) {
            e.printStackTrace ();
        }
        return null;
    }

    public void adda() {
        Object[] o = {};
        try {
            this.zYLInvocationHandler.invoke ( this, adda3, o );
            return;
        } catch (Throwable e) {
            e.printStackTrace ();
        }
    }

    public java.lang.String geta() {
        Object[] o = {};
        try {
            return (java.lang.String) this.zYLInvocationHandler.invoke ( this, geta4, o );
        } catch (Exception e) {
            e.printStackTrace ();
        }
        return null;
    }

上面是要枚举出来所有的方法的实现,很简单都一个模样,把实现交给handler去做就可以了。至于怎么实现靠handler,我们动态生成的这个类只负责委托,不做任何事情。看到这里大家一定急不可待的想知道这个类怎么生成的了,我把我写的源码给大家贴出来看一下。

package meituan.zylproxy.util;

import java.lang.reflect.Method;
import java.lang.reflect.Modifier;

import meituan.zylproxy.test.i.Idto;
import meituan.zylproxy.test.i.Idto2;

public class ClassUtil {

    public static String mackProxyClass(Class> c) throws Exception{
        if(!c.isInterface()){
            throw new Exception("代理的类必须是接口");
        }

        StringBuffer importsp = new StringBuffer();
        importsp.append("import java.lang.reflect.Method;\n");
        importsp.append("import meituan.zylproxy.handlder.ZylProxy;\n");
        importsp.append("import meituan.zylproxy.handlder.ZYLInvocationHandler;\n");

        importsp.append("import " +c.getName() + ";\n");

        StringBuilder publicStaticMethods = new StringBuilder();
        
        //public static Method add;
        StringBuilder publicMethods = new StringBuilder();
        publicMethods.append("public ZYLInvocationHandler zYLInvocationHandler;\n");

        StringBuilder constructorsp = new StringBuilder();
        String interFaceName = c.getName().substring(c.getName().lastIndexOf(".")+1);
        constructorsp.append("public ").append("" + interFaceName + "Porxy").
                   append("(ZYLInvocationHandler zYLInvocationHandler) { "
                           + "this.zYLInvocationHandler = zYLInvocationHandler;"
                           + "}");

        publicStaticMethods.append(" static { try {  ");

        StringBuilder classsp = new StringBuilder();
        classsp.append("public class").append(" " + interFaceName + "Porxy").append(" extends ZylProxy implements ").append(interFaceName).append("{");
        
     
        StringBuilder allMethods = new StringBuilder();
        Method[] Methods = c.getMethods();
        
        int curr=0;
        for (Method m_:Methods) {
            curr++;
            publicMethods.append("public static Method ").append(m_.getName() + String.valueOf(curr)).append(";\n");
            
            publicStaticMethods.append("").append(m_.getName() +  String.valueOf(curr)).append("=");

            publicStaticMethods.append("Class.forName(\"" + c.getName() + "\")" + ".getMethod(\""+ m_.getName() +"\", ");
            
            StringBuilder sp =new StringBuilder();
            StringBuilder spArgs = new StringBuilder();
            spArgs.append("Object[] o ={");
            //public
             sp.append(Modifier.toString(m_.getModifiers()).replace("abstract", "")).append(" ");
            //void | java.lang.String
            sp.append(m_.getReturnType().getName()).append(" ");
            //add()|get()
            sp.append(m_.getName().concat("("));

            StringBuilder methodCLass = new StringBuilder();
             if(m_.getParameterTypes().length>0){
                Class>[] claszz = m_.getParameterTypes();
                int methodOffset = 0;
                methodCLass.append("new Class[] { ");
                for (Class> c_ : claszz) {
                    String paramStr = "obj" + String.valueOf(++methodOffset);
                    spArgs.append(paramStr.concat(","));
                    sp.append(c_.getName().toString().concat(" ").concat(paramStr)).append(",");
                    methodCLass.append("Class.forName(\"" + c_.getName()).append("\"),");
                }
                sp = new StringBuilder(sp.substring(0, sp.length()-1));
                 spArgs = new StringBuilder(spArgs.substring(0, spArgs.length()-1));
                 methodCLass = new StringBuilder(methodCLass.substring(0, methodCLass.length()-1));
            }

             if(methodCLass.length()>0){
                 methodCLass.append("}");
             } else{
                 methodCLass.append("new Class[0]");
             }
             sp.append("){\n");
            spArgs.append("}");
            sp.append(spArgs+";\n");
            
            if(sp.toString().contains("void")){
                sp.append("try {\n this.zYLInvocationHandler.invoke(this,").append(m_.getName() + String.valueOf(curr)).append(",").append("o);\n return;\n");
                sp.append("} catch (Throwable e) {e.printStackTrace();}}");

            } else{
                sp.append("try {return "
                        + "("
                        + m_.getReturnType().getName()
                        + ")"
                        + "this.zYLInvocationHandler.invoke(this,").append(m_.getName() + String.valueOf(curr)).append(",").append("o);\n");
            
                sp.append("} catch (Exception e) {e.printStackTrace();} return null;");

            }

            publicStaticMethods.append(methodCLass).append(");\n");
             allMethods.append(sp);
        }
        publicStaticMethods.append("} catch(Exception e){}}");
        classsp.append(publicMethods)
               .append(publicStaticMethods)
               .append(constructorsp).append(allMethods).append("}");
        classsp.append("}");
        importsp.append(classsp);
        return importsp.toString();
     }

    
    public static String mackMultiProxyClass(Class>[] cs) throws Exception{

        StringBuffer importsp = new StringBuffer();
        importsp.append("import java.lang.reflect.Method;\n");
        importsp.append("import meituan.zylproxy.handlder.ZylProxy;\n");
        importsp.append("import meituan.zylproxy.handlder.ZYLInvocationHandler;\n");
        
        StringBuilder publicStaticMethods = new StringBuilder();
        publicStaticMethods.append(" static { try {  ");
        
        //public static Method add;
        StringBuilder publicMethods = new StringBuilder();
        publicMethods.append("public ZYLInvocationHandler zYLInvocationHandler;\n");
                
        int curr=0;
        
        StringBuilder constructorsp = new StringBuilder();
        String interFaceName = cs[0].getName().substring(cs[0].getName().lastIndexOf(".")+1);
        constructorsp.append("public ").append("" + interFaceName + "Porxy").
                   append("(ZYLInvocationHandler zYLInvocationHa


评论


亲,登录后才可以留言!