1. python 优化速度-更换编译器

2021-03-06 05:30

阅读:428

标签:根据   ==   *args   pytho   官方   def   for   **kwargs   参数   

numba初体验

今天在知乎上发现了一个很神奇的包numba,可以用jit的方式大幅提高计算型python代码的效率,一起来看一下

安装

pip3 install numba

注意:numba仅支持python3.5以上的版本

使用

numba的使用也很简单,使用numba.jit装饰锂电函数就可以了

以下是一个简单的demo

import time
import numba
from functools import wraps


def timeit(f):
    @wraps(f)
    def wrapper(*args, **kwargs):
        enter_time = time.time()
        ret = f(*args, **kwargs)
        print("{}:{}".format(f.__name__, time.time()-enter_time))
        return ret
    return wrapper


@timeit
def fib(n):
    f1 = f2 = 1
    for i in range(1, n):
        f1, f2 = f2, f1 + f2
    return f2


@timeit
@numba.jit
def fib_with_jit(n):
    f1 = f2 = 1
    for i in range(1, n):
        f1, f2 = f2, f1 + f2
    return f2


if __name__ == ‘__main__‘:
    fib_with_jit(2000000)	# fib_with_jit:0.11314105987548828
    fib(2000000)	# fib:50.43636465072632

为什么这么快?

根据官方文档:numba会读取python字节码,结合函数的参数信息,分析和优化代码,然后使用LLVM编译器生成与机器匹配的机器码,之后每次调用函数时直接使用机器码就行了(其实就是JIT技术,与PyPy类似)
可以看到,使用numba装饰的函数快了大概上百倍。测试过程中还发现,当n比较小时,fib执行的时间比fib_with_jit短很多,但当n逐渐增大时,fib执行时间缓慢增长,而fib_with_jit几乎不变

1. python 优化速度-更换编译器

标签:根据   ==   *args   pytho   官方   def   for   **kwargs   参数   

原文地址:https://www.cnblogs.com/ludada/p/14307402.html


评论


亲,登录后才可以留言!