雪花算法(SnowFlake)Java实现

2021-03-27 06:24

阅读:719

标签:last   i++   get   printf   运算符   分析   string   seconds   else   

分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种。

算法原理

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

技术图片

1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。

41bit-时间戳,用来记录时间戳,毫秒级。

  • 41位可以表示技术图片个数字
  • 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 技术图片,减1是因为可表示的数值范围是从0开始算的,而不是1
  • 也就是说41位可以表示技术图片个毫秒的值,转化成单位年则是技术图片

10bit-工作机器id,用来记录工作机器id

  • 可以部署在技术图片个节点,包括5位datacenterId和5位workerId
  • 5位(bit)可以表示的最大正整数是技术图片,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

12bit-序列号,序列号,用来记录同毫秒内产生的不同id

  • 12位(bit)可以表示的最大正整数是技术图片,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号

由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的

SnowFlake可以保证:

  • 所有生成的id按时间趋势递增
  • 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

算法实现(Java)

Twitter官方给出的算法实现 是用Scala写的,这里不做分析,可自行查看

package com.ihrm.common.utils;

public class IdWorker {

    //下面两个每个5位,加起来就是10位的工作机器id
    private long workerId;    //工作id
    private long datacenterId;   //数据id
    //12位的序列号
    private long sequence;

    public IdWorker(long workerId, long datacenterId, long sequence) {
        // sanity check for workerId
        if (workerId > maxWorkerId || workerId ) {
            throw new IllegalArgumentException(String.format("worker Id can‘t be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId ) {
            throw new IllegalArgumentException(String.format("datacenter Id can‘t be greater than %d or less than 0", maxDatacenterId));
        }
        System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    //初始时间戳
    private long twepoch = 1288834974657L;

    //长度为5位
    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;
    //最大值
    private long maxWorkerId = -1L ^ (-1L  workerIdBits);
    private long maxDatacenterId = -1L ^ (-1L  datacenterIdBits);
    //序列号id长度
    private long sequenceBits = 12L;
    //序列号最大值
    private long sequenceMask = -1L ^ (-1L  sequenceBits);

    //工作id需要左移的位数,12位
    private long workerIdShift = sequenceBits;
    //数据id需要左移位数 12+5=17位
    private long datacenterIdShift = sequenceBits + workerIdBits;
    //时间戳需要左移位数 12+5+5=22位
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    //上次时间戳,初始值为负数
    private long lastTimestamp = -1L;

    public long getWorkerId() {
        return workerId;
    }

    public long getDatacenterId() {
        return datacenterId;
    }

    public long getTimestamp() {
        return System.currentTimeMillis();
    }

    //下一个ID生成算法
    public synchronized long nextId() {
        long timestamp = timeGen();

        //获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
        if (timestamp  lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                    lastTimestamp - timestamp));
        }

        //获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }

        //将上次时间戳值刷新
        lastTimestamp = timestamp;

        /**
         * 返回结果:
         * (timestamp - twepoch) */
        return ((timestamp - twepoch) 
                (datacenterId 
                (workerId 
                sequence;
    }

    //获取时间戳,并与上次时间戳比较
    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp  lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    //获取系统时间戳
    private long timeGen() {
        return System.currentTimeMillis();
    }

    //---------------测试---------------
    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1, 1, 1);
        for (int i = 0; i ) {
            System.out.println(worker.nextId());
        }
    }

}

关于本文介绍雪花算法,大家可以参考(煲煲菜的博客):https://segmentfault.com/a/1190000011282426

雪花算法(SnowFlake)Java实现

标签:last   i++   get   printf   运算符   分析   string   seconds   else   

原文地址:https://www.cnblogs.com/liuyangjava/p/13670237.html


评论


亲,登录后才可以留言!