optim.py-使用tensorflow实现一般优化算法

2021-05-03 22:29

阅读:372

标签:with   lambda   int   name   使用   eps   ons   rust   inverse   

optim.py

Project URL:https://github.com/Codsir/optim.git

Based on: tensorflow, numpy, copy, inspect

Why Tensorflow?

Tensorflow supports symbol computation well like Automatic derivation and the program
could be excuted with GPU, which will save our time.

dogleg(p_u, p_b, delta, tau = 2)

The Dogleg method to solve the subproblems of trust region method

getGrad(f, x_value)

Get the gradient of function f with tf.gradients()

    f= lambda x:100*(x[1]-x[0]**2)**2 + (1-x[0])**2
    x_value = [1.0,2.0]
    f_gradients = getGrad(f, x_value)

getHess(f, x_value)

Get the Hessian matrix of f with tf.hessian

TrustRegion_dogleg(f, delta = 0.5, eta = 0, *x_0, tolerance= 0.0001)

Trust region method with subproblems solved by the Dogleg method

ExactLineSearch_quadratic(f, x_k, p_k)

Exact line search method when the target function is quadratic

QuasiNewton(f, *x_0, HUpdateMethod = ‘BFGS‘, LineSearch = ExactLineSearch_quadratic, tolerance = 0.0001)

quasi-Newton method

PenaltySimple(f, c_eq, c_leq, epsilon)

f is the target function, c_eq is a list contains equation constraints,
c_leq is a list contains unequal constrains, epsilon is the terminal parameter
these functions could be function name or anonymous functions, which defined by ‘lambda‘
The subproblem is solved by Newton Method, but it will be modified in the future because sometimes it‘s hard to compute the inverse matrix of Hessian matrix.

Example

Demo 1:trust region method with subproblems solved by the Dogleg method

    f = lambda x:100*(x[1]-x[0]**2)**2 + (1-x[0])**2
    f.paraLength = 2    ## 这一步不可缺少
    x_k, f_k = TrustRegion_dogleg(f, delta = 10)

Demo 2:quasi-Newton method demo

    print(‘Demo 2:quasi-Newton method demo‘)
    f = lambda x:x[0]**2 + 2 * x[1]**2
    f.paraLength = 2
    x_0 = np.array([1, 1])
    x_k, f_k = QuasiNewton(f, x_0)

Demo 3:penalty function method demo

    print(‘Demo 3:penalty function method demo‘)
    f = lambda x:x[0] + x[1]
    f.paraLength = 2
    c_eq = [lambda x:x[0]**2 + x[1]**2 - 2]
    c_leq = []
    x_k, f_k = PenaltySimple(f, c_eq, c_leq, [-3,-4])

optim.py-使用tensorflow实现一般优化算法

标签:with   lambda   int   name   使用   eps   ons   rust   inverse   

原文地址:https://www.cnblogs.com/TigerZhang/p/13196363.html


评论


亲,登录后才可以留言!